Development and validation of clinico‐imaging machine learning and deep learning models to predict responses to initial antiseizure medications in epilepsy

癫痫 队列 磁共振成像 人工智能 医学 机器学习 深度学习 置信区间 内科学 计算机科学 放射科 精神科
作者
Mohammad‐Reza Nazem‐Zadeh,Richard Shek‐kwan Chang,Sarah Barnard,Heath Pardoe,Ruben Kuzniecky,Debabrata Mishra,Hadi Kamkar,Duong Nhu,Deval Metha,Daniel Thom,Zhibin Chen,Zongyuan Ge,Terence J. O’Brien,Benjamin Sinclair,Jacqueline A. French,Meng Law,Patrick Kwan
出处
期刊:Epilepsia [Wiley]
标识
DOI:10.1111/epi.18668
摘要

Abstract Objective Antiseizure medications (ASMs) are the first‐line treatment for epilepsy, yet they are ineffective in controlling seizures in about 40% of patients with unpredictable individual response to treatment. This study aimed to develop and validate artificial intelligence (AI) models using clinical and brain magnetic resonance imaging (MRI) data to predict responses to the first two ASMs in people with epilepsy. Methods People with recently diagnosed epilepsy treated with ASM monotherapy at the Alfred Hospital, Melbourne, Australia formed the development cohort. We developed AI models employing various combinations of clinical features, prescribed ASMs, and brain multimodal MRI images/features to predict the probability of seizure freedom at 12 months while taking the first or second ASM monotherapy. Five‐fold cross‐internal validation was performed. External validation was conducted on a validation cohort comprising participants of the Human Epilepsy Project. Results The development cohort included 154 individuals (36% female, 85% focal epilepsy), of whom 29% had received both the first and second ASM monotherapy. The validation cohort included 301 individuals (61% female, all focal epilepsy), of whom 33% had received both the first and second ASM monotherapy. A fusion deep learning (DL) model comprising an 18‐layer 3D videoResNet (for multi‐sequence MRI data), a transformer encoder (ASM regimens), and a dual linear neural network (for clinical characteristics) outperformed other models. It achieved an internal cross validation F1 score of 0.75 ± 0.05 (average ± 95% confidence interval), higher than other machine learning (ML) models and DL models with less complex architecture or integration of fewer imaging sequences. This DL model significantly outperformed the best ML model on validation cohort ( p < 0.001). Significance AI‐based models incorporating brain MRI, clinical, and medication data can efficiently predict seizure freedom in recently diagnosed epilepsy. They may enhance treatment selection in epilepsy and offer a foundation for clinical decision support systems. Further validation in larger cohorts is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝星完成签到,获得积分10
刚刚
1秒前
YANA完成签到,获得积分10
1秒前
汉堡包应助酷酷剑通采纳,获得10
2秒前
2秒前
啦啦啦完成签到,获得积分10
2秒前
2秒前
2秒前
luzuozi完成签到,获得积分10
3秒前
液晶屏99完成签到,获得积分10
3秒前
orixero应助ning采纳,获得10
3秒前
游尘发布了新的文献求助10
3秒前
棒棒糖完成签到,获得积分10
4秒前
66868发布了新的文献求助10
4秒前
WNL发布了新的文献求助10
4秒前
毛小毛完成签到,获得积分20
4秒前
聪明牛排发布了新的文献求助20
4秒前
cbq完成签到 ,获得积分10
4秒前
可口可乐完成签到,获得积分10
4秒前
宋金天完成签到,获得积分10
5秒前
zxr发布了新的文献求助10
5秒前
5秒前
斯文败类应助玩命的觅珍采纳,获得10
6秒前
顾矜应助文静的翠安采纳,获得10
6秒前
lmy完成签到 ,获得积分10
6秒前
酷酷剑通完成签到,获得积分10
7秒前
1234完成签到,获得积分10
7秒前
科研通AI5应助yzz采纳,获得10
7秒前
7秒前
7秒前
毛小毛发布了新的文献求助10
7秒前
科研通AI5应助大气的裙子采纳,获得30
8秒前
DDZ发布了新的文献求助10
9秒前
西猫完成签到 ,获得积分20
9秒前
x_zhiqi完成签到,获得积分10
10秒前
rioo发布了新的文献求助10
11秒前
David发布了新的文献求助10
11秒前
青塘龙仔发布了新的文献求助10
11秒前
12秒前
LIMIN完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A ductile solid electrolyte interphase for solid-state batteries 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5021787
求助须知:如何正确求助?哪些是违规求助? 4259928
关于积分的说明 13275183
捐赠科研通 4065917
什么是DOI,文献DOI怎么找? 2223874
邀请新用户注册赠送积分活动 1232753
关于科研通互助平台的介绍 1156714