清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Machine Learning Framework for Advanced Driving Force Analysis of Individuals' Dietary Water Footprint

作者
Zoran Kapelan
出处
期刊:Earth’s Future [Wiley]
卷期号:13 (12)
标识
DOI:10.1029/2024ef005061
摘要

Abstract Addressing water scarcity requires significant attention to reducing water footprint (WF) related to food consumption. Since individuals' dietary behavior is largely influenced by their demographic and anthropometric attributes, it is crucial to identify individuals who have a high dietary WF and prioritize them as the focus of policies. Several studies analyzing the driving factors behind dietary WF exist but have multiple limitations. These include the statistical models with rather modest performances, lack of rigorous sensitivity analysis/feature importance (FI) analysis, and lack of generalization ability. Here, we developed a novel ML‐based framework for analyzing the driving forces behind dietary WF. The framework incorporated three machine learning (ML) models (Extra‐Trees (ET), Histogram‐based Gradient Boosting (HGB), and eXtreme Gradient Boosting (XGB)) and an ML explanation approach Shapley Additive exPlanations (SHAP). This framework was applied to a case study on Chinese inhabitants. The derived results validated the proposed framework and demonstrated ML's superiority over conventional statistical methods. XGB was identified as the optimal model as it effectively captured the variability in the data and showed good generalization performance. The FI analysis for XGB revealed the most influential features on dietary WF, with income level, urbanization level, education level, and gender emerging as the top four features in descending order. Through the subsequent SHAP dependence analysis, the priority groups for dietary WF reduction interventions were identified as high‐income residents, urban residents, highly educated residents, and male residents. In light of these findings and their underlying causes, the paper concluded with a set of policy recommendations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的淇完成签到,获得积分10
2秒前
qq完成签到 ,获得积分10
7秒前
庄海棠完成签到 ,获得积分10
11秒前
18秒前
77wlr完成签到,获得积分10
23秒前
29秒前
44秒前
冷静的尔竹完成签到,获得积分10
59秒前
dwz发布了新的文献求助10
1分钟前
creep2020完成签到,获得积分10
1分钟前
喜悦的唇彩完成签到,获得积分10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
小糊涂仙儿完成签到 ,获得积分10
1分钟前
欣然发布了新的文献求助10
2分钟前
2分钟前
Moto_Fang发布了新的文献求助10
2分钟前
zzhui完成签到,获得积分10
2分钟前
充电宝应助Moto_Fang采纳,获得10
2分钟前
Cherry完成签到 ,获得积分10
3分钟前
wangxiaoyanger完成签到,获得积分10
3分钟前
Criminology34应助wangxiaoyanger采纳,获得10
3分钟前
3分钟前
aaaa发布了新的文献求助10
3分钟前
aaaa完成签到,获得积分10
3分钟前
打打应助高贵菲菲采纳,获得10
3分钟前
桥西小河完成签到 ,获得积分10
4分钟前
欣然完成签到,获得积分10
4分钟前
4分钟前
4分钟前
想酷发布了新的文献求助10
4分钟前
林派锐完成签到,获得积分20
4分钟前
林派锐发布了新的文献求助10
4分钟前
佳佳完成签到,获得积分10
5分钟前
思源应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
Akim应助研友_LNBgkL采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590635
求助须知:如何正确求助?哪些是违规求助? 4675771
关于积分的说明 14795410
捐赠科研通 4634104
什么是DOI,文献DOI怎么找? 2532871
邀请新用户注册赠送积分活动 1501349
关于科研通互助平台的介绍 1468741