Exploiting UAV for Air–Ground Integrated Federated Learning: A Joint UAV Location and Resource Optimization Approach

计算机科学 能源消耗 嵌入 分布式计算 高效能源利用 GSM演进的增强数据速率 实时计算 人工智能 工程类 电气工程
作者
Yuqian Jing,Yuben Qu,Chao Dong,Weiqing Ren,Yun Shen,Qihui Wu,Song Guo
出处
期刊:IEEE transactions on green communications and networking [Institute of Electrical and Electronics Engineers]
卷期号:7 (3): 1420-1433 被引量:3
标识
DOI:10.1109/tgcn.2023.3242999
摘要

Recently, many exciting usage scenarios and groundbreaking technologies for sixth generation (6G) networks have drawn more and more attention. The revolution of 6G mainly lies in ubiquitous intelligence, which promotes the development of edge intelligence (EI) by running artificial intelligence (AI) algorithms at the network edge. By embedding training capabilities across the network nodes, federated learning (FL) can achieve high security and alleviate network traffic congestion, which provides a promising way to realize the ubiquitous EI. While traditional FL usually relies static terrestrial base stations (BSs) for the global model aggregation, unmanned aerial vehicles (UAVs) could effectively supplement the terrestrial BSs because of their high maneuverability, thereby building the air-ground integrated FL (AGIFL). Nevertheless, how to effectively deploy the UAV and allocate resources to boost the learning performance and achieve high energy efficiency in the AGIFL remains largely unexplored. In this paper, we study how to jointly optimize the UAV location and resource allocation to minimize the incurred cost in terms of two objectives: i) the minimization of terrestrial users’ energy consumption; ii) the minimization of tradeoff between energy consumption and training latency. The formulated non-convex problems are efficiently solved by alternating optimization techniques based on successive convex approximation (SCA) approaches after appropriate problem decomposition. Extensive simulation results show that our proposed algorithms can reduce more cost than three benchmarks while guaranteeing the learning accuracy. Furthermore, we construct a real-world AGIFL system, implement the proposed algorithms in the system, and carry out field experiments to verify the superiority of our algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡发布了新的文献求助10
刚刚
YuanLeiZhang完成签到,获得积分10
2秒前
巅峰囚冰完成签到,获得积分10
2秒前
bobo发布了新的文献求助10
3秒前
3秒前
3秒前
小新发布了新的文献求助10
4秒前
百合骑士完成签到,获得积分20
4秒前
武雨寒发布了新的文献求助10
5秒前
wsy关注了科研通微信公众号
6秒前
6秒前
moyu完成签到,获得积分10
7秒前
七七完成签到,获得积分10
7秒前
7秒前
8秒前
Solitude完成签到,获得积分10
8秒前
taster发布了新的文献求助10
8秒前
小新完成签到 ,获得积分10
8秒前
CipherSage应助余佘采纳,获得10
9秒前
wqc2060完成签到,获得积分10
9秒前
夏简完成签到,获得积分10
10秒前
10秒前
科研通AI5应助wise111采纳,获得10
12秒前
汉堡完成签到,获得积分10
12秒前
13秒前
情怀应助许元冬采纳,获得10
15秒前
Zxj发布了新的文献求助10
15秒前
机智冬瓜完成签到,获得积分10
16秒前
16秒前
脑洞疼应助妮妮采纳,获得10
16秒前
17秒前
11222浅发布了新的文献求助10
18秒前
18秒前
20秒前
8R60d8应助诸葛藏藏采纳,获得10
21秒前
王者归来完成签到,获得积分10
22秒前
甜甜圈发布了新的文献求助10
23秒前
24秒前
25秒前
彩色觅荷发布了新的文献求助10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572