Atomic interface regulation of rare-marth metal single atom catalysts for energy conversion

能量转换 催化作用 纳米技术 接口(物质) 电催化剂 Atom(片上系统) 化学能 材料科学 光催化 机制(生物学) 化学物理 化学 计算机科学 物理 物理化学 生物化学 嵌入式系统 吸附 电化学 吉布斯等温线 电极 有机化学 热力学 量子力学
作者
Ziheng Zhan,Zhiyi Sun,Zihao Wei,Yaqiong Li,Wenxing Chen,Shenghua Li,Siping Pang
出处
期刊:Nano Research [Springer Nature]
卷期号:17 (5): 3493-3515 被引量:20
标识
DOI:10.1007/s12274-023-6287-5
摘要

Efficient photocatalysis and electrocatalysis in energy conversion have been important strategies to alleviate energy crises and environmental issues. In recent years, with the rapid development of emerging catalysts, significant progress has been made in photocatalysis for converting solar energy into chemical energy and electrocatalysis for converting electrical energy into chemical energy. However, their selectivity and efficiency of the products are poor. Rare earth (RE) can achieve atomic level fine regulation of catalysts and play an crucial role in optimizing catalyst performance by their unique electronic and orbital structures. However, there is a lack of systematic review on the atomic interface regulation mechanism of RE and their role in energy conversion processes. Single atom catalysts (SACs) provide clear active sites and 100% atomic utilization, which is conducive to exploring the regulatory mechanisms of RE. Therefore, this review mainly takes atomic level doped RE as an example to review and discuss the atomic interface regulation role of RE elements in energy conversion. Firstly, a brief introduction was given to the synthesis strategies that can effectively exert the atomic interface regulation effect of RE, with a focus on the atomic interface regulation mechanism of RE. Meanwhile, the regulatory mechanisms of RE atoms have been systematically summarized in various energy conversion applications. Finally, the challenges faced by RE in energy conversion, as well as future research directions and prospects, were pointed out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hd发布了新的文献求助10
2秒前
ss完成签到,获得积分10
2秒前
甘地发布了新的文献求助10
3秒前
3秒前
bill关注了科研通微信公众号
3秒前
5秒前
6秒前
哦哦哦发布了新的文献求助10
6秒前
秋子david发布了新的文献求助10
6秒前
传奇3应助wei采纳,获得10
7秒前
Orange应助JIN采纳,获得10
7秒前
huan完成签到,获得积分10
7秒前
愉快的翅膀完成签到,获得积分10
8秒前
宁静致远完成签到,获得积分10
8秒前
嘻嘻发布了新的文献求助10
9秒前
上官若男应助weddcf采纳,获得10
9秒前
ninomae完成签到 ,获得积分10
9秒前
dai完成签到,获得积分20
11秒前
肚皮完成签到 ,获得积分0
12秒前
13秒前
wanci应助啦啦啦啦啦啦啦采纳,获得10
14秒前
尊敬的怀曼完成签到 ,获得积分10
14秒前
草莓布丁应助susu采纳,获得30
14秒前
fang完成签到 ,获得积分0
15秒前
16秒前
DNA完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
木头星星应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得30
18秒前
王优秀完成签到,获得积分10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
Battery应助科研通管家采纳,获得10
19秒前
envdavid完成签到,获得积分10
19秒前
大个应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474