Spatio-temporal multi-graph transformer network for joint prediction of multiple vessel trajectories

计算机科学 变压器 图形 稳健性(进化) 人工智能 理论计算机科学 生物化学 量子力学 基因 物理 电压 化学
作者
Ryan Wen Liu,Weixin Zheng,Maohan Liang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107625-107625 被引量:18
标识
DOI:10.1016/j.engappai.2023.107625
摘要

The vessel trajectory prediction plays a vital role in guaranteeing traffic safety for unmanned surface vehicles and autonomous surface vessels. By leveraging advanced satellite communication technology, AIS provides massive vessel trajectories, significantly enhancing maritime safety and decision-making. This research proposes a spatio-temporal multi-graph transformer network (ST-MGT), aiming to predict multiple vessel trajectories simultaneously. This innovative model amalgamates the capabilities of graph convolutional networks (GCNs) and transformer models to proficiently address the spatial and temporal interactions amongst vessels. The ST-MGT is comprised of three crucial layers. The temporal transformer layer employs sophisticated temporal transformer and memory mechanisms to discern the intricate temporal correlations between vessel movements. The spatial multi-graph transformer layer constructs a comprehensive multi-graph representation to illuminate spatial correlations between vessels. It incorporates a spatial graph convolutional network and transformer to meticulously understand and interpret the diverse and complex spatial interactions amongst varying vessels. Lastly, the ξ-Regularized LSTM (RegLSTM) layer is implemented for predicting vessel trajectories accurately, based on the unraveled spatio-temporal patterns. Extensive and meticulous experiments reveal that our proposed ST-MGT method transcends other state-of-the-art prediction models in robustness and accuracy. The model's capability to facilitate multi-vessel and multi-step prediction showcases its immense potential and adaptability in intricate and multifaceted navigation environments, underscoring its practical applicability and significance in enhancing maritime navigational safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
L3发布了新的文献求助10
刚刚
1秒前
张紫茹发布了新的文献求助10
1秒前
受伤采蓝完成签到,获得积分20
1秒前
夏小胖发布了新的文献求助10
2秒前
隐形曼青应助LQ采纳,获得10
3秒前
bkagyin应助mugglea采纳,获得10
3秒前
火星上的如松完成签到,获得积分10
3秒前
北岸初晴发布了新的文献求助10
3秒前
4秒前
小小发布了新的文献求助10
4秒前
miaomiao完成签到,获得积分10
4秒前
哈尔滨发布了新的文献求助10
4秒前
大钱完成签到,获得积分10
4秒前
迟未瑾发布了新的文献求助10
5秒前
xiaolei001应助MNing采纳,获得10
5秒前
Orange应助yikiann采纳,获得10
5秒前
Chelsea发布了新的文献求助10
5秒前
Hello应助徐橙橙采纳,获得10
5秒前
5秒前
脑洞疼应助Noyo采纳,获得10
6秒前
starry发布了新的文献求助10
6秒前
薯条怎么解决问题完成签到,获得积分10
6秒前
zhanghao发布了新的文献求助10
8秒前
LLL完成签到,获得积分10
10秒前
11秒前
英俊的绮波关注了科研通微信公众号
11秒前
科研通AI2S应助标致的香水采纳,获得10
11秒前
晓雯应助仙女采纳,获得10
12秒前
WXM应助顺心沁采纳,获得10
12秒前
12秒前
Dalia完成签到,获得积分10
13秒前
liao举报bzk求助涉嫌违规
13秒前
仓鼠球完成签到,获得积分10
13秒前
鸡蛋完成签到 ,获得积分10
13秒前
13秒前
15秒前
XIA完成签到,获得积分20
15秒前
木之尹发布了新的文献求助10
16秒前
脆脆发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496281
求助须知:如何正确求助?哪些是违规求助? 4594019
关于积分的说明 14443173
捐赠科研通 4526588
什么是DOI,文献DOI怎么找? 2480255
邀请新用户注册赠送积分活动 1464895
关于科研通互助平台的介绍 1437672