Spatio-temporal multi-graph transformer network for joint prediction of multiple vessel trajectories

计算机科学 变压器 图形 稳健性(进化) 人工智能 理论计算机科学 生物化学 化学 物理 量子力学 电压 基因
作者
Ryan Wen Liu,Weixin Zheng,Maohan Liang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107625-107625 被引量:18
标识
DOI:10.1016/j.engappai.2023.107625
摘要

The vessel trajectory prediction plays a vital role in guaranteeing traffic safety for unmanned surface vehicles and autonomous surface vessels. By leveraging advanced satellite communication technology, AIS provides massive vessel trajectories, significantly enhancing maritime safety and decision-making. This research proposes a spatio-temporal multi-graph transformer network (ST-MGT), aiming to predict multiple vessel trajectories simultaneously. This innovative model amalgamates the capabilities of graph convolutional networks (GCNs) and transformer models to proficiently address the spatial and temporal interactions amongst vessels. The ST-MGT is comprised of three crucial layers. The temporal transformer layer employs sophisticated temporal transformer and memory mechanisms to discern the intricate temporal correlations between vessel movements. The spatial multi-graph transformer layer constructs a comprehensive multi-graph representation to illuminate spatial correlations between vessels. It incorporates a spatial graph convolutional network and transformer to meticulously understand and interpret the diverse and complex spatial interactions amongst varying vessels. Lastly, the ξ-Regularized LSTM (RegLSTM) layer is implemented for predicting vessel trajectories accurately, based on the unraveled spatio-temporal patterns. Extensive and meticulous experiments reveal that our proposed ST-MGT method transcends other state-of-the-art prediction models in robustness and accuracy. The model's capability to facilitate multi-vessel and multi-step prediction showcases its immense potential and adaptability in intricate and multifaceted navigation environments, underscoring its practical applicability and significance in enhancing maritime navigational safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周冯雪给周冯雪的求助进行了留言
刚刚
刚刚
小二郎应助阿QQQQ采纳,获得10
刚刚
许鸣燕发布了新的文献求助10
1秒前
FashionBoy应助动听的雪碧采纳,获得10
1秒前
离个大谱发布了新的文献求助10
1秒前
MUXIYOU完成签到,获得积分10
2秒前
笑笑的妙松完成签到,获得积分10
3秒前
4秒前
orixero应助es采纳,获得10
4秒前
KanmenRider完成签到,获得积分10
4秒前
5秒前
alvaro完成签到,获得积分10
6秒前
6秒前
俏皮的采蓝应助Acer采纳,获得10
7秒前
Nature发布了新的文献求助10
8秒前
完美世界应助虚拟的荔枝采纳,获得10
8秒前
8秒前
阳光的一应助夹心饼干采纳,获得10
9秒前
复成完成签到 ,获得积分10
9秒前
11发布了新的文献求助10
11秒前
zczczczczczc发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
14秒前
15秒前
Lucas应助冰冰采纳,获得10
15秒前
风清扬应助小酸酸采纳,获得100
15秒前
大意的人杰关注了科研通微信公众号
16秒前
科目三应助12121313采纳,获得10
17秒前
17秒前
欢呼煎蛋发布了新的文献求助10
17秒前
aaa发布了新的文献求助10
17秒前
18秒前
18秒前
柒z发布了新的文献求助10
18秒前
19秒前
22秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897220
求助须知:如何正确求助?哪些是违规求助? 3441146
关于积分的说明 10820137
捐赠科研通 3166098
什么是DOI,文献DOI怎么找? 1749184
邀请新用户注册赠送积分活动 845175
科研通“疑难数据库(出版商)”最低求助积分说明 788492