AiRs: Adapter in Remote Sensing for Parameter-Efficient Transfer Learning

计算机科学 适配器(计算) 微调 人工智能 学习迁移 分割 适应(眼睛) 机器学习 计算机硬件 量子力学 光学 物理
作者
Leiyi Hu,Hongfeng Yu,Wanxuan Lu,Dongshuo Yin,Xian Sun,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:18
标识
DOI:10.1109/tgrs.2024.3351889
摘要

Remote sensing is stepping into the era of the foundation model, where the fine-tuning paradigm is widely adopted to transfer the profound knowledge of pretrained foundation models to downstream tasks. However, the full fine-tuning method would become inefficient in terms of training and storage, as the foundation models are getting larger and larger. Recently, a lot of deep learning research has proposed various parameter-efficient fine-tuning (PEFT) methods that perform well with a few trainable parameters. However, most of them focus on fine-tuning general foundation models without considering the special properties of remote sensing. In this article, we propose an adapter in remote sensing (AiRs) to fine-tune large foundation models for remote sensing downstream tasks by introducing the adapter-tuning framework. Specifically, we construct AiRs from two aspects: more expressive adaptation modules and a more efficient integration strategy. Specialized adaptation modules are applied to different functional layers in AiRs, which encode the inductive bias of remote sensing images and enhance the semantic concepts of geography. Moreover, AiRs establishes pathways between trainable modules with residual connections, which reduces training difficulty and improves performance. We conduct extensive experiments on object detection, semantic segmentation, and scene classification tasks. By training only 4.4% parameters of the pretrained backbone, AiRs surpasses the previous state-of-the-art (SOTA) PEFT competitors on all experimental datasets and outperforms the full fine-tuning on six out of ten datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助adia采纳,获得20
刚刚
麻瓜X发布了新的文献求助10
1秒前
1秒前
1秒前
迪歪歪应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得30
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
迪歪歪应助科研通管家采纳,获得10
2秒前
海蓝云天应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
外向薯片发布了新的文献求助10
3秒前
顾矜应助科研通管家采纳,获得20
3秒前
迪歪歪应助科研通管家采纳,获得10
3秒前
kongxiangjiu应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
lk发布了新的文献求助10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
zoma完成签到,获得积分10
3秒前
4秒前
蜜尾石莲猬关注了科研通微信公众号
4秒前
4秒前
Owen应助务实的姿采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959