亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342103-342103 被引量:47
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助a3265640采纳,获得10
2秒前
7秒前
窗子以外完成签到,获得积分10
9秒前
WLL发布了新的文献求助10
14秒前
冰西瓜完成签到 ,获得积分0
21秒前
myg123完成签到 ,获得积分10
22秒前
25秒前
P_Chem完成签到,获得积分10
25秒前
28秒前
34秒前
34秒前
38秒前
40秒前
53秒前
高铭泽发布了新的文献求助10
56秒前
脑洞疼应助吃死你啦啦采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
离雨发布了新的文献求助10
1分钟前
甜蜜的鸽子完成签到,获得积分10
1分钟前
1分钟前
Jasper应助WWW采纳,获得10
1分钟前
无骨鸡爪不长胖完成签到,获得积分10
1分钟前
1分钟前
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
无限火龙果完成签到,获得积分10
1分钟前
1分钟前
罗伊黄发布了新的文献求助10
1分钟前
1分钟前
哈皮波完成签到,获得积分10
1分钟前
xm完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
无语的诗柳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407723
求助须知:如何正确求助?哪些是违规求助? 4525246
关于积分的说明 14101484
捐赠科研通 4439051
什么是DOI,文献DOI怎么找? 2436578
邀请新用户注册赠送积分活动 1428544
关于科研通互助平台的介绍 1406621