Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1287: 342103-342103 被引量:40
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztayx完成签到 ,获得积分10
1秒前
甜甜以云完成签到,获得积分10
1秒前
kaier完成签到 ,获得积分0
2秒前
QAQSS完成签到 ,获得积分10
2秒前
TZMY完成签到,获得积分10
2秒前
sun完成签到,获得积分10
5秒前
啊哈啊哈额完成签到,获得积分10
6秒前
alixy完成签到,获得积分10
8秒前
大口吃面的女医生完成签到 ,获得积分10
9秒前
kyle完成签到 ,获得积分10
12秒前
imica完成签到 ,获得积分10
14秒前
苏州小北完成签到,获得积分10
17秒前
kouke80发布了新的文献求助10
19秒前
Johnlian完成签到 ,获得积分10
20秒前
欧阳慧玲完成签到 ,获得积分20
21秒前
小洪俊熙完成签到,获得积分10
24秒前
阿鑫完成签到 ,获得积分10
27秒前
微笑的巧蕊完成签到 ,获得积分10
28秒前
山君完成签到 ,获得积分20
28秒前
追光少年完成签到,获得积分10
31秒前
xelloss完成签到,获得积分10
31秒前
一玮完成签到 ,获得积分10
31秒前
彩色亿先完成签到 ,获得积分10
32秒前
滴滴完成签到 ,获得积分10
34秒前
小龙发布了新的文献求助10
37秒前
老迟到的烟酒升完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
rsdggsrser完成签到 ,获得积分10
40秒前
dajiejie完成签到 ,获得积分10
41秒前
张西西完成签到 ,获得积分10
42秒前
Lucycomplex完成签到,获得积分10
44秒前
hml123完成签到,获得积分10
44秒前
Yy完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
51秒前
cheng完成签到,获得积分10
51秒前
小龙完成签到,获得积分10
51秒前
正直的雨双完成签到,获得积分10
51秒前
江流有声完成签到 ,获得积分10
52秒前
齐济完成签到 ,获得积分10
52秒前
浮浮世世完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834731
求助须知:如何正确求助?哪些是违规求助? 4138474
关于积分的说明 12808505
捐赠科研通 3882371
什么是DOI,文献DOI怎么找? 2135109
邀请新用户注册赠送积分活动 1155173
关于科研通互助平台的介绍 1054557