Rapid detection of ash content in black tea using a homemade miniature near-infrared spectroscopy

特征选择 红茶 近红外光谱 数学 线性判别分析 化学计量学 统计 人工智能 模式识别(心理学) 计算机科学 化学 机器学习 光学 物理 食品科学
作者
Guangxin Ren,Lingling Yin,Rui Wu,Jingming Ning
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:308: 123740-123740 被引量:12
标识
DOI:10.1016/j.saa.2023.123740
摘要

Ash is a testing index with both health inspection value and quality decision value, and it is an essential detection item in the import and export trade of tea. To realize the rapid and effective quantitative analysis of ash content in tea, this study proposed the use of a homemade miniature near-infrared (NIR) spectroscopy combined with multivariate analysis for the rapid detection of ash content in black tea. First, NIR data of black tea samples from different countries were acquired and optimized by the spectral preprocessing method. Then, the optimized pre-processed spectral data were used as features, and four feature wavelength selection algorithms, such as competitive adaptive reweighted sampling, iteratively retaining informative variables (IRIV), variable combination population analysis (VCPA)-IRIV, and interval variable iterative space shrinkage approach (IVISSA), were utilized to optimize the feature spectra. Finally, the support vector machine regression (SVR) algorithm was employed to construct the quantitative models of ash content in black tea by combining the optimal wavelengths obtained from the four feature selection methods mentioned above. The experimental results showed that the IVISSA-SVR model had the best performance, with correlation coefficient (Rp), root mean square errors of prediction (RMSEP), and relative prediction deviation (RPD) of 0.9546, 0.0192, and 5.59 for the prediction set, respectively. The results demonstrate that a miniature NIR sensing system combined with chemometrics as an effective analytical tool can realize the rapid detection of ash content in black tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss关注了科研通微信公众号
刚刚
希望天下0贩的0应助一二采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
倩倩完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
NGU关闭了NGU文献求助
2秒前
twr发布了新的文献求助10
3秒前
3秒前
jor666完成签到,获得积分10
4秒前
4秒前
鲨鱼完成签到,获得积分10
4秒前
5秒前
芒果完成签到 ,获得积分10
5秒前
5秒前
倩倩发布了新的文献求助10
5秒前
flytime1115发布了新的文献求助20
5秒前
温暖的寻雪完成签到 ,获得积分10
6秒前
6秒前
6秒前
我是老大应助舒服的觅云采纳,获得10
6秒前
6秒前
7秒前
myth发布了新的文献求助10
7秒前
7秒前
Hello应助科研小猪采纳,获得10
8秒前
leo发布了新的文献求助20
9秒前
9秒前
彭于晏应助小太阳采纳,获得30
10秒前
英姑应助lmy采纳,获得10
10秒前
10秒前
10秒前
Origin完成签到 ,获得积分10
10秒前
bi完成签到,获得积分10
10秒前
Lapporange发布了新的文献求助10
11秒前
11秒前
何必在乎发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994