Rapid detection of ash content in black tea using a homemade miniature near-infrared spectroscopy

特征选择 红茶 近红外光谱 数学 线性判别分析 化学计量学 统计 人工智能 模式识别(心理学) 计算机科学 化学 机器学习 光学 物理 食品科学
作者
Guangxin Ren,Lingling Yin,Rui Wu,Jingming Ning
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:308: 123740-123740 被引量:7
标识
DOI:10.1016/j.saa.2023.123740
摘要

Ash is a testing index with both health inspection value and quality decision value, and it is an essential detection item in the import and export trade of tea. To realize the rapid and effective quantitative analysis of ash content in tea, this study proposed the use of a homemade miniature near-infrared (NIR) spectroscopy combined with multivariate analysis for the rapid detection of ash content in black tea. First, NIR data of black tea samples from different countries were acquired and optimized by the spectral preprocessing method. Then, the optimized pre-processed spectral data were used as features, and four feature wavelength selection algorithms, such as competitive adaptive reweighted sampling, iteratively retaining informative variables (IRIV), variable combination population analysis (VCPA)-IRIV, and interval variable iterative space shrinkage approach (IVISSA), were utilized to optimize the feature spectra. Finally, the support vector machine regression (SVR) algorithm was employed to construct the quantitative models of ash content in black tea by combining the optimal wavelengths obtained from the four feature selection methods mentioned above. The experimental results showed that the IVISSA-SVR model had the best performance, with correlation coefficient (Rp), root mean square errors of prediction (RMSEP), and relative prediction deviation (RPD) of 0.9546, 0.0192, and 5.59 for the prediction set, respectively. The results demonstrate that a miniature NIR sensing system combined with chemometrics as an effective analytical tool can realize the rapid detection of ash content in black tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HS发布了新的文献求助10
1秒前
pluto应助xiuxiuzhang采纳,获得20
2秒前
momo完成签到,获得积分10
5秒前
bee完成签到 ,获得积分10
6秒前
江南之南完成签到 ,获得积分10
6秒前
7秒前
冰山未闯完成签到,获得积分10
9秒前
可爱的函函应助TS采纳,获得30
9秒前
lalala完成签到,获得积分10
10秒前
神勇语堂完成签到 ,获得积分10
10秒前
sci完成签到 ,获得积分10
11秒前
yuchen应助南风采纳,获得10
12秒前
干净的烧鹅完成签到,获得积分10
12秒前
折柳完成签到 ,获得积分10
12秒前
kento完成签到,获得积分0
12秒前
尤珩完成签到,获得积分10
13秒前
梵高完成签到,获得积分10
14秒前
24秒前
Cu完成签到 ,获得积分10
24秒前
背后归尘完成签到,获得积分10
24秒前
25秒前
111完成签到 ,获得积分10
29秒前
上官若男应助McbxM采纳,获得10
29秒前
七七完成签到,获得积分10
30秒前
SciGPT应助Allen采纳,获得10
31秒前
红炉点血发布了新的文献求助30
31秒前
CodeCraft应助葛葛巫采纳,获得10
31秒前
受伤听露完成签到 ,获得积分10
32秒前
JJ完成签到,获得积分10
32秒前
pluto应助优雅的纸鹤采纳,获得20
33秒前
传奇3应助wqm采纳,获得10
34秒前
doDo发布了新的文献求助20
35秒前
37秒前
jhx完成签到,获得积分10
39秒前
超级涔完成签到 ,获得积分10
41秒前
42秒前
McbxM发布了新的文献求助10
42秒前
zdw完成签到,获得积分10
45秒前
六十的清发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761727
求助须知:如何正确求助?哪些是违规求助? 3305495
关于积分的说明 10134394
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658199
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751