LESS: Label-efficient multi-scale learning for cytological whole slide image screening

人工智能 计算机科学 模式识别(心理学) 任务(项目管理) 监督学习 机器学习 人工神经网络 经济 管理
作者
Beidi Zhao,Wenlong Deng,Zi Han Li,Chen Zhou,Zu‐Hua Gao,Gang Wang,Xiaoxiao Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:94: 103109-103109 被引量:16
标识
DOI:10.1016/j.media.2024.103109
摘要

In computational pathology, multiple instance learning (MIL) is widely used to circumvent the computational impasse in giga-pixel whole slide image (WSI) analysis. It usually consists of two stages: patch-level feature extraction and slide-level aggregation. Recently, pretrained models or self-supervised learning have been used to extract patch features, but they suffer from low effectiveness or inefficiency due to overlooking the task-specific supervision provided by slide labels. Here we propose a weakly-supervised Label-Efficient WSI Screening method, dubbed LESS, for cytological WSI analysis with only slide-level labels, which can be effectively applied to small datasets. First, we suggest using variational positive-unlabeled (VPU) learning to uncover hidden labels of both benign and malignant patches. We provide appropriate supervision by using slide-level labels to improve the learning of patch-level features. Next, we take into account the sparse and random arrangement of cells in cytological WSIs. To address this, we propose a strategy to crop patches at multiple scales and utilize a cross-attention vision transformer (CrossViT) to combine information from different scales for WSI classification. The combination of our two steps achieves task-alignment, improving effectiveness and efficiency. We validate the proposed label-efficient method on a urine cytology WSI dataset encompassing 130 samples (13,000 patches) and a breast cytology dataset FNAC 2019 with 212 samples (21,200 patches). The experiment shows that the proposed LESS reaches 84.79%, 85.43%, 91.79% and 78.30% on the urine cytology WSI dataset, and 96.88%, 96.86%, 98.95%, 97.06% on the breast cytology high-resolution-image dataset in terms of accuracy, AUC, sensitivity and specificity. It outperforms state-of-the-art MIL methods on pathology WSIs and realizes automatic cytological WSI cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
fanpengzhen发布了新的文献求助10
刚刚
刚刚
郑友盛完成签到 ,获得积分10
刚刚
娃哈哈读研版完成签到,获得积分10
1秒前
lsy发布了新的文献求助10
1秒前
xol完成签到 ,获得积分10
1秒前
xzzt发布了新的文献求助200
1秒前
伶俐寒凡发布了新的文献求助10
2秒前
zhanghao发布了新的文献求助10
2秒前
无冕凯完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
lingua应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
车访枫完成签到 ,获得积分10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
灯泡子完成签到,获得积分10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
xuan完成签到,获得积分10
3秒前
Raymond应助科研通管家采纳,获得30
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小青椒应助科研通管家采纳,获得30
3秒前
fzx发布了新的文献求助10
3秒前
五虎完成签到,获得积分10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
arizaki7应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
qingmoheng应助科研通管家采纳,获得10
4秒前
小青椒应助科研通管家采纳,获得100
4秒前
FashionBoy应助小5采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
qdr应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
yuanke666应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494738
求助须知:如何正确求助?哪些是违规求助? 4592472
关于积分的说明 14437214
捐赠科研通 4525281
什么是DOI,文献DOI怎么找? 2479331
邀请新用户注册赠送积分活动 1464128
关于科研通互助平台的介绍 1437177