甲酸
催化作用
无机化学
材料科学
法拉第效率
本体电解
X射线光电子能谱
二氧化碳电化学还原
双金属片
选择性
电化学
化学
化学工程
循环伏安法
电极
一氧化碳
有机化学
工程类
物理化学
作者
Wei Chen,Rongzhen Chen,Yuhang Jiang,Yating Wang,Yihua Zhu,Yuhang Li,Chunzhong Li
出处
期刊:Small
[Wiley]
日期:2023-12-14
卷期号:20 (11)
被引量:15
标识
DOI:10.1002/smll.202306795
摘要
Abstract The formation of carbonate in neutral/alkaline solutions leads to carbonate crossover, severely reducing carbon dioxide (CO 2 ) single pass conversion efficiency (SPCE). Thus, CO 2 electrolysis is a prospective route to achieve high CO 2 utilization under acidic environment. Bimetallic Bi‐based catalysts obtained utilizing metal doping strategies exhibit enhanced CO 2 ‐to‐formic acid (HCOOH) selectivity in alkaline/neutral media. However, achieving high HCOOH selectivity remains challenging in acidic media. To this end, Indium (In) doped Bi2O2CO3 via hydrothermal method is prepared for in‐situ electroreduction to In‐Bi/BiOx nanosheets for acidic CO2 reduction reaction (CO2RR). In doping strategy regulates the electronic structure of Bi, promoting the fast derivatization of Bi2O2CO3 into Bi‐O active sites to enhance CO2RR catalytic activity. The optimized Bi 2 O 2 CO 3 ‐derived catalyst achieves the maximum HCOOH faradaic efficiency (FE) of 96% at 200 mA cm −2 . The SPCE for HCOOH production in acid is up to 36.6%, 2.2‐fold higher than the best reported catalysts in alkaline environment. Furthermore, in situ Raman and X‐ray photoelectron spectroscopy demonstrate that In‐induced electronic structure modulation promotes a rapid structural evolution from nanobulks to Bi/BiO x nanosheets with more active species under acidic CO 2 RR, which is a major factor in performance improvement.
科研通智能强力驱动
Strongly Powered by AbleSci AI