ECA-PHV: Predicting human-virus protein-protein interactions through an interpretable model of effective channel attention mechanism

可解释性 计算机科学 人工智能 机制(生物学) 机器学习 计算生物学 数据挖掘 生物 哲学 认识论
作者
Minghui Wang,Jiali Lai,Jihua Jia,Fei Xu,Hongyan Zhou,Bin Yu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:247: 105103-105103
标识
DOI:10.1016/j.chemolab.2024.105103
摘要

The prediction of human-virus protein-protein interactions (human-virus PPIs) is significant for exploring the mechanisms of viral infection, making their prediction a necessary and practically valuable research topic. Since conventional methods for the determination of human-virus protein-protein interactions are very complex and expensive, the construction of models plays a crucial role. In this paper, we construct an interpretable model, ECA-PHV, to predict human-virus protein-protein interactions based on an effective channel attention mechanism. First, we utilize five coding modalities, namely AAC, DDE, MMI, CT, and GTPC, to extract the hidden biological information in protein sequences. Individual feature weights are then learned by using a differential evolutionary algorithm that employs weighted combinations to adequately represent various protein sequence information. Next, irrelevant features in multi-information fusion are removed by Group Lasso. Finally, the prediction model is constructed by combining effective channel attention, BiGRU, and 1D-CNN. Compared with existing models, the interpretability framework ECA-PHV proposed in this paper has competitive and stable predictive performance. This shows that our model can efficiently focus on important information about protein sequences. In conclusion, this study accelerates the exploration of human-virus protein-protein interactions and provides some insights of practical value for probing human-virus relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wind完成签到,获得积分10
1秒前
活泼的小蘑菇完成签到,获得积分10
2秒前
2秒前
布饭a完成签到 ,获得积分10
2秒前
传奇3应助mo采纳,获得10
2秒前
Huang37完成签到,获得积分10
2秒前
buxiangshangxue完成签到 ,获得积分10
2秒前
3秒前
zho发布了新的文献求助10
3秒前
3秒前
郭小胖14完成签到,获得积分10
3秒前
深情安青应助呆萌的雪碧采纳,获得10
4秒前
Yangy_发布了新的文献求助10
4秒前
隐形衬衫完成签到 ,获得积分10
5秒前
zychaos发布了新的文献求助10
5秒前
5秒前
CodeCraft应助熊猫苏采纳,获得10
5秒前
明天肯定学习完成签到,获得积分20
5秒前
Calvin完成签到,获得积分10
6秒前
温暖南莲发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
KSung发布了新的文献求助10
7秒前
7秒前
黄黄完成签到,获得积分20
7秒前
kiki完成签到,获得积分10
8秒前
科研通AI5应助123采纳,获得10
8秒前
桃子完成签到,获得积分10
8秒前
WayneO完成签到,获得积分10
8秒前
万安安完成签到,获得积分10
9秒前
9秒前
ym完成签到,获得积分10
9秒前
Suki发布了新的文献求助10
10秒前
10秒前
lzq完成签到 ,获得积分10
10秒前
11秒前
我是快乐的小行家完成签到,获得积分10
11秒前
Yangy_完成签到,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798