职位(财务)
计算机科学
跟踪(教育)
计算机视觉
人工智能
航程(航空)
磁道(磁盘驱动器)
估计
期限(时间)
灵敏度(控制系统)
运动(物理)
算法
工程类
量子力学
电子工程
财务
操作系统
物理
航空航天工程
经济
教育学
系统工程
心理学
作者
Siyu Lu,Jun Yang,Bo Yang,Xiaolu Li,Zhengtong Yin,Lirong Yin,Wenfeng Zheng
出处
期刊:ICT Express
[Elsevier]
日期:2024-01-09
卷期号:10 (3): 465-471
被引量:46
标识
DOI:10.1016/j.icte.2024.01.002
摘要
The surgical navigation system enhances surgical safety and accuracy by providing precise guidance. However, traditional pose estimation algorithms lack real-time performance and accuracy. To address this issue, a multi-average Long Short Term Memory (LSTM) prediction network is designed to maintain sensitivity in estimating the position of surgical instruments and track their random motion trends. Additionally, the spatial coordinates of positioning markers are applied back to the imaging plane, reducing the recognition range and improving algorithm running speed. Experimental results show that the average time of estimation is less than 1ms while ensuring the prediction effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI