HyperSOR: Context-aware Graph Hypernetwork for Salient Object Ranking

计算机科学 图形 突出 人工智能 场景图 排名(信息检索) 对象(语法) 分割 背景(考古学) 模式识别(心理学) 计算机视觉 理论计算机科学 生物 古生物学 渲染(计算机图形)
作者
Minglang Qiao,Mai Xu,Lai Jiang,Peng Lei,Shi-Jie Wen,Yunjin Chen,Leonid Sigal
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (9): 5873-5889 被引量:21
标识
DOI:10.1109/tpami.2024.3368158
摘要

Salient object ranking (SOR) aims to segment salient objects in an image and simultaneously predict their saliency rankings, according to the shifted human attention over different objects. The existing SOR approaches mainly focus on object-based attention, e.g., the semantic and appearance of object. However, we find that the scene context plays a vital role in SOR, in which the saliency ranking of the same object varies a lot at different scenes. In this paper, we thus make the first attempt towards explicitly learning scene context for SOR. Specifically, we establish a large-scale SOR dataset of 24,373 images with rich context annotations, i.e., scene graphs, segmentation, and saliency rankings. Inspired by the data analysis on our dataset, we propose a novel graph hypernetwork, named HyperSOR, for context-aware SOR. In HyperSOR, an initial graph module is developed to segment objects and construct an initial graph by considering both geometry and semantic information. Then, a scene graph generation module with multi-path graph attention mechanism is designed to learn semantic relationships among objects based on the initial graph. Finally, a saliency ranking prediction module dynamically adopts the learned scene context through a novel graph hypernetwork, for inferring the saliency rankings. Experimental results show that our HyperSOR can significantly improve the performance of SOR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
1秒前
是我呀小夏完成签到 ,获得积分10
4秒前
5秒前
5秒前
8秒前
wanci应助皑皑采纳,获得10
9秒前
CY关闭了CY文献求助
10秒前
11秒前
11秒前
jun发布了新的文献求助10
12秒前
Miao完成签到,获得积分20
13秒前
14秒前
16秒前
17秒前
hanatae发布了新的文献求助30
17秒前
小二郎应助爱猫的纭采纳,获得10
19秒前
19秒前
peipei发布了新的文献求助10
20秒前
jun完成签到,获得积分10
20秒前
光阳150发布了新的文献求助10
20秒前
angel完成签到,获得积分10
20秒前
Cc发布了新的文献求助10
21秒前
21秒前
笑点低的孤容应助司空豁采纳,获得10
22秒前
23秒前
23秒前
24秒前
皑皑发布了新的文献求助10
25秒前
26秒前
ah完成签到,获得积分10
27秒前
lalala发布了新的文献求助10
27秒前
浮生若梦完成签到 ,获得积分10
27秒前
CipherSage应助美丽跳跳糖采纳,获得10
28秒前
28秒前
汴汴发布了新的文献求助10
28秒前
ctt完成签到 ,获得积分10
31秒前
满意静丹发布了新的文献求助10
32秒前
32秒前
33秒前
无花果应助一个可爱的人采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945024
求助须知:如何正确求助?哪些是违规求助? 3490041
关于积分的说明 11054688
捐赠科研通 3221032
什么是DOI,文献DOI怎么找? 1780381
邀请新用户注册赠送积分活动 865346
科研通“疑难数据库(出版商)”最低求助积分说明 799850