Deep Learning Based Vehicle-Mounted Environmental Context Awareness via GNSS Signal

全球导航卫星系统应用 计算机科学 背景(考古学) 学习迁移 人工智能 运动学 上下文模型 深度学习 机器学习 特征(语言学) 模式识别(心理学) 全球定位系统 地理 电信 对象(语法) 考古 哲学 物理 经典力学 语言学
作者
Feng Zhu,Kegan Luo,Xianlu Tao,Xiaohong Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9498-9511 被引量:4
标识
DOI:10.1109/tits.2024.3350874
摘要

High-precision GNSS positioning plays a crucial role in intelligent transportation systems, and leveraging artificial intelligence can enable the development of reliable context-aware models that enhance context-adaptive GNSS algorithms. However, the complexity of contexts and the variability of features limit the performance of GNSS-based context-aware models. Therefore, this study aims to construct a context-aware model in kinematic vehicle-mounted environments. Firstly, due to the lack of publicly available datasets, a kinematic vehicle-mounted dataset comprising over 40,000 data samples is constructed. This dataset includes five contexts including open area, urban canyon, boulevard, under viaduct, and tunnel. Meanwhile, efficient feature selection methods are applied, namely SHAP (Shapley Additive exPlanations) and SFFS (Sequential Forward Floating Selection), to obtain effective data features. Secondly, considering the temporal correlation of GNSS signals, eight alternative models (SVM, MLP, CNN-b, CNN-r, CNN-i, ML-LSTM, ML-RNN, ML-GRU) are designed and trained. Context probability is introduced to indicate context transition area. Comparative studies show that the ML-LSTM model exhibits the best performance, with an an accuracy of 92.72% and a mean average precision (mAP) of 92.94% in context-separated areas, and with an accuracy of 87.49% and a mAP of 89.21% in context-continuous areas. Furthermore, to address the performance degradation when deploying the model on different receiver types, this study explores model-based transfer learning. Four transfer approaches, namely direct transfer, fully connected layer transfer, partial layer transfer, and all layer transfer, are applied. The all layer transfer approach demonstrates the best performance, exhibiting a 18.34% improvement compared to the non-transfer approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶油橘子完成签到,获得积分10
刚刚
丂枧完成签到,获得积分10
刚刚
晓晓关注了科研通微信公众号
1秒前
1111111111应助神df采纳,获得10
1秒前
1秒前
Lucas应助玥来玥好采纳,获得10
1秒前
JamesPei应助xk666hh采纳,获得10
2秒前
噜噜发布了新的文献求助10
2秒前
朱晓宇完成签到,获得积分10
2秒前
坦率灵槐发布了新的文献求助10
2秒前
2秒前
大力翠阳完成签到,获得积分10
2秒前
文静的谷菱完成签到,获得积分10
3秒前
3秒前
夏姬宁静完成签到,获得积分10
3秒前
4秒前
5秒前
林林林发布了新的文献求助10
5秒前
hbhsjk完成签到,获得积分10
5秒前
5秒前
单单来迟完成签到,获得积分10
6秒前
丂枧发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
wdn0411完成签到,获得积分10
8秒前
科研通AI6应助科研白白采纳,获得10
8秒前
glory0510完成签到,获得积分10
8秒前
9秒前
9秒前
fanyouxin发布了新的文献求助10
9秒前
10秒前
璟晔发布了新的文献求助10
11秒前
11秒前
牛溪媛发布了新的文献求助10
12秒前
独家阿吉豆完成签到,获得积分10
12秒前
搜集达人应助机智雨双采纳,获得10
12秒前
Ray发布了新的文献求助10
12秒前
12秒前
DiJia发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340805
求助须知:如何正确求助?哪些是违规求助? 4477142
关于积分的说明 13934136
捐赠科研通 4373054
什么是DOI,文献DOI怎么找? 2402823
邀请新用户注册赠送积分活动 1395606
关于科研通互助平台的介绍 1367696