Weakly Supervised Fatigue Crack Detection in Steel Bridge Girders Using a Proposed Two‐Stage Network Training with a Segmentation Refinement Module

判别式 分割 计算机科学 人工智能 推论 桥(图论) 机器学习 注释 方案(数学) 模式识别(心理学) 数学 医学 内科学 数学分析
作者
Fei Jiang,Youliang Ding,Yongsheng Song,Fangfang Geng,Zhiwen Wang
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2024 (1) 被引量:3
标识
DOI:10.1155/2024/4863177
摘要

Existing semantic segmentation methods for fatigue cracks in steel bridge girders are fully supervised and thus demand manual annotation of pixel‐level labels, which is time‐consuming. Recently, there have been remarkable developments in semantic segmentation under image‐level tag supervision. However, these weakly supervised approaches are still inferior to the fully supervised manner in terms of accuracy. To mitigate this gap, this paper commits to improving the correlation between high‐level semantics to low‐level appearance. A two‐stage training manner with a segmentation refinement module for progressively refining pseudolabels and training the segmentation network was proposed. First, an activation modulation and recalibration scheme was recommended, which leverages a spotlight branch and a compensation branch to locate both the discriminative and less‐discriminative object regions. Then, the generated pseudolabels were used as supervision to train the segmentation network in the proposed two‐stage manner. In the first stage, the network was pretrained to learn all essential information and provide a basic segmentation performance, aiming to facilitate network convergence in the following training. To develop the inference quality, in the second stage, the pretrained network was further trained recursively with the designed segmentation refinement module to improve the labels using two postprocessing algorithms between each iteration. Overall, our method achieves comparable inference results to fully supervised approaches while significantly reducing annotation workload, which improves the efficiency of routine bridge inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优美的雁丝完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
1秒前
俭朴远望完成签到 ,获得积分10
2秒前
wanci应助shinn采纳,获得10
2秒前
万能图书馆应助onepine采纳,获得10
2秒前
bobokan应助典雅的俊驰采纳,获得10
3秒前
纯情的咖啡豆完成签到,获得积分10
4秒前
秀丽人杰完成签到,获得积分10
4秒前
刘铠瑜发布了新的文献求助10
5秒前
叮叮当完成签到,获得积分10
6秒前
无限麦片发布了新的文献求助10
6秒前
深情安青应助wangyaofeng采纳,获得10
6秒前
alice发布了新的文献求助10
7秒前
8秒前
QXS完成签到,获得积分20
8秒前
surprise完成签到 ,获得积分10
8秒前
9秒前
dwz发布了新的文献求助10
10秒前
小于完成签到,获得积分10
11秒前
苦柒完成签到,获得积分10
12秒前
SweetyANN发布了新的文献求助10
12秒前
无花果应助阿媛呐采纳,获得10
12秒前
13秒前
KDINO完成签到,获得积分10
13秒前
Lucas应助kk采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
onepine发布了新的文献求助10
16秒前
16秒前
Ava应助shinn采纳,获得10
16秒前
平淡萍完成签到,获得积分20
16秒前
lu1222关注了科研通微信公众号
18秒前
盐胁迫植物完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
传奇3应助lz34217采纳,获得10
19秒前
wangyaofeng发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775441
求助须知:如何正确求助?哪些是违规求助? 5624034
关于积分的说明 15438644
捐赠科研通 4907733
什么是DOI,文献DOI怎么找? 2640940
邀请新用户注册赠送积分活动 1588694
关于科研通互助平台的介绍 1543620