Importance of physical information on the prediction of heavy-ion fusion cross sections with machine learning

物理 融合 重离子 核物理学 离子 原子物理学 统计物理学 量子力学 哲学 语言学
作者
Zhilong Li,Zepeng Gao,Ling Liu,Yongjia Wang,Long Zhu,Qingfeng Li
出处
期刊:Physical Review C [American Physical Society]
卷期号:109 (2) 被引量:4
标识
DOI:10.1103/physrevc.109.024604
摘要

In this work, the Light Gradient Boosting Machine (LightGBM), which is a modern decision tree based machine-learning algorithm, is used to study the fusion cross section (CS) of heavy-ion reaction. Several basic quantities (e.g., mass number and proton number of projectile and target) and the CS obtained from phenomenological formula are fed into the LightGBM algorithm to predict the CS. It is found that, on the validation set, the mean absolute error (MAE) which measures the average magnitude of the absolute difference between ${log}_{10}$ of the predicted CS and experimental CS is 0.129 by only using the basic quantities as the input, this value is smaller than 0.154 obtained from the empirical coupled channel model. MAE can be further reduced to 0.08 by including an physical-informed input feature. The MAE on the test set (it consists of 280 data points from 18 reaction systems that not included in the training set) is about 0.19 and 0.53 by including and excluding the physical-informed feature, respectively. We further verify the LightGBM predictions by comparing the CS of $^{40,48}\mathrm{Ca}+^{78}\mathrm{Ni}$ obtained from the density-constrained time-dependent Hartree-Fock approach. Our study demonstrates the importance of physical information in predicting fusion cross section of heavy-ion reaction with machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Frank应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
李健应助zsy采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
希望天下0贩的0应助adai采纳,获得10
2秒前
Sun发布了新的文献求助10
2秒前
123发布了新的文献求助10
3秒前
4秒前
wang发布了新的文献求助10
5秒前
5秒前
tinty完成签到,获得积分10
6秒前
顶顶小明完成签到,获得积分10
6秒前
SY完成签到,获得积分10
9秒前
自由一一发布了新的文献求助10
9秒前
Henry完成签到,获得积分10
10秒前
顾矜应助垃圾的摆设采纳,获得10
10秒前
万能图书馆应助zsy采纳,获得10
12秒前
Sway完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497239
求助须知:如何正确求助?哪些是违规求助? 4594744
关于积分的说明 14446447
捐赠科研通 4527478
什么是DOI,文献DOI怎么找? 2480884
邀请新用户注册赠送积分活动 1465248
关于科研通互助平台的介绍 1437903