A Unified Machine Learning Through Focus Resist 3-D Structure Model

抵抗 光学(聚焦) 平版印刷术 计算机科学 进程窗口 光学接近校正 人工智能 过程(计算) 光学 材料科学 纳米技术 物理 图层(电子) 操作系统
作者
Mingyang Xia,Yan Yan,Chen Li,Xuelong Shi
出处
期刊:IEEE Transactions on Semiconductor Manufacturing [Institute of Electrical and Electronics Engineers]
卷期号:37 (1): 59-66 被引量:2
标识
DOI:10.1109/tsm.2023.3340110
摘要

To ensure post OPC data quality, examination based on estimated resist contours at resist bottom alone is insufficient, reliable prediction of lithography performance within process window must rely on complete information of on-wafer resist 3D structures. In this regard, resist 3D structure model, in particular, the through focus resist 3D structure model, with full chip capability will be the ultimate model in demand. To develop machine learning resist 3D structure models, we have proposed the physics-based information encoding scheme, together with carefully chosen deep convolution neural network and model training strategies. Our proposed through focus resist 3D structure model is based on conditional U-net structure with first five eigen images as model’s main inputs and the focus setting as the conditional input. The average normalized cross correlation (NCC) or mean structure similarity index between ground truth and model predicted resist 3D structures can reach 0.92. With single GPU (Tesla M60), it takes 6.1ms for the model to produce resist 3D structure covering area of 1.8umx1.8um. The model is fast enough and can be engineered for full chip implementation. The model can extend the capability of detecting lithography process window aware resist loss related hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
辛勤月饼完成签到,获得积分10
1秒前
在水一方应助1212采纳,获得10
1秒前
王强发布了新的文献求助10
4秒前
5秒前
Hello应助热情的笑白采纳,获得10
7秒前
二饼完成签到,获得积分10
8秒前
简啦啦发布了新的文献求助10
10秒前
科研通AI2S应助zhao采纳,获得10
10秒前
迷人幻巧完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
蓝天应助学术老6采纳,获得10
12秒前
隐形曼青应助zhu采纳,获得10
13秒前
liney完成签到,获得积分10
14秒前
15秒前
持满发布了新的文献求助10
16秒前
王强完成签到,获得积分10
16秒前
guoy郭莹发布了新的文献求助10
17秒前
18秒前
18秒前
桐桐应助持满采纳,获得10
20秒前
凉雨渲完成签到,获得积分10
20秒前
21秒前
21秒前
斯文败类应助唐白云采纳,获得10
21秒前
22秒前
24秒前
26秒前
26秒前
27秒前
awaiskhan发布了新的文献求助10
28秒前
Vegetable_Dog发布了新的文献求助10
30秒前
Cristina发布了新的文献求助10
30秒前
31秒前
迷人幻巧发布了新的文献求助10
32秒前
开心榴莲大王完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478