Image2Brain: a cross-modality model for blind stereoscopic image quality ranking

人工智能 计算机科学 立体视 模态(人机交互) 图像质量 计算机视觉 模式识别(心理学) 脑电图 卷积神经网络 图像(数学) 发电机(电路理论) 质量(理念) 特征(语言学) 感知 视觉感受 排名(信息检索) 精神科 物理 认识论 哲学 生物 量子力学 功率(物理) 神经科学 语言学 心理学
作者
Lili Shen,Xintong Li,Zhaoqing Pan,Xichun Sun,Yixuan Zhang,Jing Zheng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (4): 046041-046041
标识
DOI:10.1088/1741-2552/acf2c9
摘要

Abstract Objective. Human beings perceive stereoscopic image quality through the cerebral visual cortex, which is a complex brain activity. As a solution, the quality of stereoscopic images can be evaluated more accurately by attempting to replicate the human perception from electroencephalogram (EEG) signals on image quality in a machine, which is different from previous stereoscopic image quality assessment methods focused only on the extraction of image features. Approach. Our proposed method is based on a novel image-to-brain (I2B) cross-modality model including a spatial-temporal EEG encoder (STEE) and an I2B deep convolutional generative adversarial network (I2B-DCGAN). Specifically, the EEG representations are first learned by STEE as real samples of I2B-DCGAN, which is designed to extract both quality and semantic features from the stereoscopic images by a semantic-guided image encoder, and utilize a generator to conditionally create the corresponding EEG features for images. Finally, the generated EEG features are classified to predict the image perceptual quality level. Main results. Extensive experimental results on the collected brain-visual multimodal stereoscopic image quality ranking database, demonstrate that the proposed I2B cross-modality model can better emulate the visual perception mechanism of the human brain and outperform the other methods by achieving an average accuracy of 95.95 % . Significance. The proposed method can convert the learned stereoscopic image features into brain representations without EEG signals during testing. Further experiments verify that the proposed method has good generalization ability on new datasets and the potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
boli发布了新的文献求助30
1秒前
珍珠奶茶完成签到,获得积分10
3秒前
hhuajw完成签到,获得积分10
4秒前
科研通AI5应助无奈秋荷采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
YINZHE应助科研通管家采纳,获得20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
taco完成签到,获得积分20
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
spujo应助科研通管家采纳,获得10
7秒前
7秒前
evolute完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
小士兵泥人完成签到,获得积分10
10秒前
英俊的铭应助胡萝卜icc采纳,获得10
12秒前
13秒前
Hello应助坚定路人采纳,获得10
13秒前
丘比特应助呼呼呼采纳,获得10
14秒前
14秒前
evolute发布了新的文献求助10
15秒前
16秒前
Mryuan发布了新的文献求助10
16秒前
FashionBoy应助三新荞采纳,获得30
16秒前
17秒前
17秒前
znlion完成签到,获得积分10
17秒前
Minigun完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794881
求助须知:如何正确求助?哪些是违规求助? 3339777
关于积分的说明 10297235
捐赠科研通 3056415
什么是DOI,文献DOI怎么找? 1676988
邀请新用户注册赠送积分活动 805034
科研通“疑难数据库(出版商)”最低求助积分说明 762286