Reproducible Quantification of the Microstructure of Complex Quenched and Quenched and Tempered Steels Using Modern Methods of Machine Learning

微观结构 基本事实 分割 人工智能 再现性 像素 计算机科学 材料科学 电子背散射衍射 模式识别(心理学) 显微镜 光学 物理 数学 统计 复合材料
作者
Björn-Ivo Bachmann,Martin Müller,Dominik Britz,Thorsten Staudt,Frank Mücklich
出处
期刊:Metals [MDPI AG]
卷期号:13 (8): 1395-1395 被引量:9
标识
DOI:10.3390/met13081395
摘要

Current conventional methods of evaluating microstructures are characterized by a high degree of subjectivity and a lack of reproducibility. Modern machine learning (ML) approaches have already shown great potential in overcoming these challenges. Once trained with representative data in combination with objective ground truth, the ML model is able to perform a task properly in a reproducible and automated manner. However, in highly complex use cases, it is often not possible to create a definite ground truth. This study addresses this problem using the underlying showcase of microstructures of highly complex quenched and quenched and tempered (Q/QT) steels. A patch-wise classification approach combined with a sliding window technique provides a solution for segmenting entire microphotographs where pixel-wise segmentation is not applicable since it is hardly feasible to create reproducible training masks. Using correlative microscopy, consisting of light optical microscope (LOM) and scanning electron microscope (SEM) micrographs, as well as corresponding data from electron backscatter diffraction (EBSD), a training dataset of reference states that covers a wide range of microstructures was acquired in order to train accurate and robust ML models in order to classify LOM or SEM images. Despite the enormous complexity associated with the steels treated here, classification accuracies of 88.8% in the case of LOM images and 93.7% for high-resolution SEM images were achieved. These high accuracies are close to super-human performance, especially in consideration of the reproducibility of the automated ML approaches compared to conventional methods based on subjective evaluations through experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助000采纳,获得10
刚刚
刚刚
1秒前
Jasper应助李明虎采纳,获得10
1秒前
李健的小迷弟应助luckr采纳,获得10
1秒前
碧蓝问梅发布了新的文献求助10
1秒前
YKT完成签到,获得积分10
1秒前
1秒前
2秒前
小李的李完成签到,获得积分20
2秒前
bingyu306完成签到,获得积分10
2秒前
活泼晓啸完成签到,获得积分10
3秒前
端庄的夏槐完成签到,获得积分10
4秒前
张正发布了新的文献求助10
4秒前
钟成完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
baipengkai发布了新的文献求助10
4秒前
随想完成签到,获得积分10
5秒前
杨扬完成签到,获得积分10
5秒前
小李的李发布了新的文献求助10
5秒前
完美世界应助小白采纳,获得10
5秒前
5秒前
cc完成签到,获得积分20
5秒前
壮观访旋发布了新的文献求助10
6秒前
呆呆发布了新的文献求助10
6秒前
星辰大海应助哈哈镜阿姐采纳,获得10
6秒前
AMOR完成签到,获得积分10
6秒前
大个应助jinmuna采纳,获得10
6秒前
慕青应助AneyWinter66采纳,获得30
7秒前
Orange应助超甜大西瓜采纳,获得10
7秒前
FloraMu发布了新的文献求助10
7秒前
领导范儿应助顺利毕业采纳,获得10
7秒前
丘比特应助renxiangao采纳,获得10
8秒前
今后应助Guo采纳,获得10
8秒前
pluto应助小鱼冻干采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
隐形曼青应助lycoris采纳,获得10
9秒前
翙翙完成签到,获得积分10
10秒前
ZSZ完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851