Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents

数量结构-活动关系 噻唑烷 化学 药效团 分子描述符 试验装置 计算化学 立体化学 人工智能 计算机科学
作者
Anguraj Moulishankar,Sundarrajan Thirugnanasambandam
出处
期刊:Journal of Receptors and Signal Transduction [Taylor & Francis]
卷期号:43 (3): 83-92 被引量:5
标识
DOI:10.1080/10799893.2023.2281671
摘要

This study aims to develop a QSAR model for Antitubercular activity. The quantitative structure-activity relationship (QSAR) approach predicted the thiazolidine-4-ones derivative’s Antitubercular activity. For the QSAR study, 53 molecules with Antitubercular activity on H37Rv were collected from the literature. Compound structures were drawn by ACD/Labs ChemSketch. The energy minimization of the 2D structure was done using the MM2 force field in Chem3D pro. PaDEL Descriptor software was used to construct the molecular descriptors. QSARINS software was used in this work to develop the 2D QSAR model. A series of thiazolidine 4-one with MIC data were taken from the literature to develop the QSAR model. These compounds were split into a training set (43 compounds) and a test set (10 compounds). The PaDEL software calculated 2300 descriptors for this series of thiazolidine 4-one derivatives. The best predictive Model 4, which has R2 of 0.9092, R2adj of 0.8950 and LOF parameter of 0.0289 identify a preferred fit. The QSAR study resulted in a stable, predictive, and robust model representing the original dataset. In the QSAR equation, the molecular descriptor of MLFER_S, GATSe2, Shal, and EstateVSA 6 positively correlated with Antitubercular activity. While the SpMAD_Dzs 6 is negatively correlated with Antitubercular activity. The high polarizability, Electronegativities, Surface area contributions and number of Halogen atoms in the thiazolidine 4-one derivatives will increase the Antitubercular activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001完成签到 ,获得积分10
刚刚
kang完成签到,获得积分20
刚刚
冰美式好好喝呀完成签到,获得积分10
3秒前
小蘑菇应助虚幻树叶采纳,获得200
3秒前
shijia完成签到,获得积分10
4秒前
万能图书馆应助seven采纳,获得10
4秒前
5秒前
CipherSage应助vanHaren采纳,获得10
6秒前
岁末完成签到 ,获得积分10
8秒前
今后应助浩二采纳,获得10
9秒前
金桔儿发布了新的文献求助10
10秒前
赘婿应助执着乐双采纳,获得30
10秒前
Felix完成签到,获得积分10
15秒前
乐乐应助dasfdufos采纳,获得10
15秒前
19秒前
19秒前
Maxine完成签到 ,获得积分10
21秒前
Akim应助金桔儿采纳,获得10
21秒前
22秒前
23秒前
阿梅梅梅发布了新的文献求助10
23秒前
Vi完成签到,获得积分10
24秒前
123123发布了新的文献求助10
24秒前
25秒前
Asteria完成签到,获得积分10
25秒前
共行发布了新的文献求助10
26秒前
26秒前
研友_LpQGjn完成签到 ,获得积分10
28秒前
28秒前
西西2完成签到 ,获得积分10
29秒前
小菜鸡完成签到 ,获得积分10
29秒前
Ava应助清新的音响采纳,获得10
30秒前
柔之发布了新的文献求助10
30秒前
TIGun发布了新的文献求助10
33秒前
34秒前
34秒前
领导范儿应助123123采纳,获得10
35秒前
36秒前
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366