Identification of potential drug targets for rheumatoid arthritis from genetic insights: a Mendelian randomization study

孟德尔随机化 医学 类风湿性关节炎 药品 药物遗传学 药物基因组学 样本量测定 临床试验 生物信息学 计算生物学 基因 内科学 药理学 生物 遗传学 基因型 遗传变异 统计 数学
作者
Yu Cao,Ying Yang,Qingfeng Hu,Guojun Wei
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:21 (1) 被引量:53
标识
DOI:10.1186/s12967-023-04474-z
摘要

Abstract Introduction Rheumatoid arthritis (RA) is a chronic inflammatory illness that mostly affects the joints of the hands and feet and can reduce life expectancy by an average of 3 to 10 years. Although tremendous progress has been achieved in the treatment of RA, a large minority of patients continue to respond poorly to existing medications, owing in part to a lack of appropriate therapeutic targets. Methods To find therapeutic targets for RA, a Mendelian randomization (MR) was performed. Cis-expression quantitative trait loci (cis-eQTL, exposure) data were obtained from the eQTLGen Consortium (sample size 31,684). Summary statistics for RA (outcome) were obtained from two largest independent cohorts: sample sizes of 97,173 (22,350 cases and 74,823 controls) and 269,377 (8279 cases and 261,098), respectively. Colocalisation analysis was used to test whether RA risk and gene expression were driven by common SNPs. Drug prediction and molecular docking was further used to validate the medicinal value of drug targets. Results Seven drug targets were significant in both cohorts in MR analysis and supported by localization. PheWAS at the gene level showed only ATP2A1 associated with other traits. These genes are strongly associated with immune function in terms of biological significance. Molecular docking showed excellent binding for drugs and proteins with available structural data. Conclusion This study identifies seven potential drug targets for RA. Drugs designed to target these genes have a higher chance of success in clinical trials and is expected to help prioritise RA drug development and save on drug development costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
不配.应助子郁采纳,获得30
4秒前
4秒前
5秒前
一口布丁发布了新的文献求助10
5秒前
小王发布了新的文献求助10
7秒前
FashionBoy应助Ronnie采纳,获得10
9秒前
脆脆鲨发布了新的文献求助10
9秒前
10秒前
清歌浊酒完成签到,获得积分10
12秒前
何先生完成签到,获得积分20
12秒前
13秒前
可爱的函函应助一口布丁采纳,获得10
14秒前
小马甲应助脆脆鲨采纳,获得10
14秒前
16秒前
17秒前
caia发布了新的文献求助10
19秒前
19秒前
刘雪晴完成签到 ,获得积分10
19秒前
汉堡包应助PRIPRO采纳,获得10
20秒前
Ronnie发布了新的文献求助10
22秒前
筱菱发布了新的文献求助10
23秒前
传奇3应助安晨采纳,获得10
23秒前
一口布丁完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助30
24秒前
打打应助善良的沛山采纳,获得10
25秒前
27秒前
xxxx完成签到 ,获得积分10
27秒前
28秒前
英俊的铭应助jinzhen采纳,获得10
29秒前
33秒前
木易光军完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
36秒前
念0完成签到 ,获得积分10
36秒前
碗鱼完成签到,获得积分10
37秒前
清晨的粥完成签到 ,获得积分10
38秒前
38秒前
Crossing发布了新的文献求助10
42秒前
7Steven7完成签到 ,获得积分10
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260140
求助须知:如何正确求助?哪些是违规求助? 3793006
关于积分的说明 11896425
捐赠科研通 3440633
什么是DOI,文献DOI怎么找? 1888248
邀请新用户注册赠送积分活动 938978
科研通“疑难数据库(出版商)”最低求助积分说明 844362