亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of diabetic kidney disease in whole slide images via AI-driven quantification of pathological indicators

病态的 分割 人工智能 计算机科学 医学 肾脏疾病 病理 肾小球 内科学
作者
Xueyu Liu,Yongfei Wu,Yilin Chen,Dongna Hui,Jianan Zhang,Hao Fang,Yuanyue Lu,Hangbei Cheng,Zhuowei Yu,Weixia Han,Chen Wang,Ming Li,Xiaoshuang Zhou,Wen Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107470-107470 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107470
摘要

Diagnosis of diabetic kidney disease (DKD) mainly relies on screening the morphological variations and internal lesions of glomeruli from pathological kidney biopsy. The prominent pathological alterations of glomeruli for DKD include glomerular hypertrophy and nodular mesangial sclerosis. However, the qualitative judgment of these alterations is inaccurate and inconstant due to the intra- and inter-subject variability of pathologists. It is necessary to design artificial intelligence (AI) methods for accurate quantification of these pathological alterations and outcome prediction of DKD. In this work, we present an AI-driven framework to quantify the volume of glomeruli and degree of nodular mesangial sclerosis, respectively, based on an instance segmentation module and a novel weakly supervised Macro-Micro Aggregation (MMA) module. Subsequently, we construct classic machine learning models to predict the degree of DKD based on three selected pathological indicators via factor analysis. These corresponding modules are trained and tested on a total of 281 whole slide images (WSIs) digitized from two hospitals with different scanners. Our designed AI framework achieved inspiring results with 0.926 mIoU for glomerulus segmentation, and 0.899 F1 score for glomerulus classification in the external testing dataset. Meantime, the visualized results of the MMA module could reflect the location of the lesions. The performance of predicting disease achieved the F1 score of 0.917, which further proved the effectiveness of our AI-driven quantification of pathological indicators. Additionally, the interpretation of the machine learning model with the SHAP method showed similar accordance with the development of DKD in pathology. In conclusion, the proposed auxiliary diagnostic technologies have the feasibility for quantitative analysis of glomerular pathological tissues and alterations in DKD. Pathological quantitative indicators will also make it more convenient to provide doctors with assistance in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Treasure98发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助150
15秒前
krajicek发布了新的文献求助10
26秒前
47秒前
量子星尘发布了新的文献求助10
53秒前
光合作用完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
烟花应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
hayden完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
连安阳完成签到,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3878492
求助须知:如何正确求助?哪些是违规求助? 3421067
关于积分的说明 10721465
捐赠科研通 3145644
什么是DOI,文献DOI怎么找? 1735827
邀请新用户注册赠送积分活动 837917
科研通“疑难数据库(出版商)”最低求助积分说明 783476