病态的
分割
人工智能
计算机科学
医学
肾脏疾病
病理
肾小球
肾
内科学
作者
Xueyu Liu,Yongfei Wu,Yilin Chen,Dongna Hui,Jianan Zhang,Hao Fang,Yuanyue Lu,Hangbei Cheng,Zhuowei Yu,Weixia Han,Chen Wang,Ming Li,Xiaoshuang Zhou,Wen Zheng
标识
DOI:10.1016/j.compbiomed.2023.107470
摘要
Diagnosis of diabetic kidney disease (DKD) mainly relies on screening the morphological variations and internal lesions of glomeruli from pathological kidney biopsy. The prominent pathological alterations of glomeruli for DKD include glomerular hypertrophy and nodular mesangial sclerosis. However, the qualitative judgment of these alterations is inaccurate and inconstant due to the intra- and inter-subject variability of pathologists. It is necessary to design artificial intelligence (AI) methods for accurate quantification of these pathological alterations and outcome prediction of DKD. In this work, we present an AI-driven framework to quantify the volume of glomeruli and degree of nodular mesangial sclerosis, respectively, based on an instance segmentation module and a novel weakly supervised Macro-Micro Aggregation (MMA) module. Subsequently, we construct classic machine learning models to predict the degree of DKD based on three selected pathological indicators via factor analysis. These corresponding modules are trained and tested on a total of 281 whole slide images (WSIs) digitized from two hospitals with different scanners. Our designed AI framework achieved inspiring results with 0.926 mIoU for glomerulus segmentation, and 0.899 F1 score for glomerulus classification in the external testing dataset. Meantime, the visualized results of the MMA module could reflect the location of the lesions. The performance of predicting disease achieved the F1 score of 0.917, which further proved the effectiveness of our AI-driven quantification of pathological indicators. Additionally, the interpretation of the machine learning model with the SHAP method showed similar accordance with the development of DKD in pathology. In conclusion, the proposed auxiliary diagnostic technologies have the feasibility for quantitative analysis of glomerular pathological tissues and alterations in DKD. Pathological quantitative indicators will also make it more convenient to provide doctors with assistance in clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI