Diagnosis of diabetic kidney disease in whole slide images via AI-driven quantification of pathological indicators

病态的 分割 人工智能 计算机科学 医学 肾脏疾病 病理 肾小球 内科学
作者
Xueyu Liu,Yongfei Wu,Yilin Chen,Dongna Hui,Jianan Zhang,Hao Fang,Yuanyue Lu,Hangbei Cheng,Zhuowei Yu,Weixia Han,Chen Wang,Ming Li,Xiaoshuang Zhou,Wen Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107470-107470 被引量:18
标识
DOI:10.1016/j.compbiomed.2023.107470
摘要

Diagnosis of diabetic kidney disease (DKD) mainly relies on screening the morphological variations and internal lesions of glomeruli from pathological kidney biopsy. The prominent pathological alterations of glomeruli for DKD include glomerular hypertrophy and nodular mesangial sclerosis. However, the qualitative judgment of these alterations is inaccurate and inconstant due to the intra- and inter-subject variability of pathologists. It is necessary to design artificial intelligence (AI) methods for accurate quantification of these pathological alterations and outcome prediction of DKD. In this work, we present an AI-driven framework to quantify the volume of glomeruli and degree of nodular mesangial sclerosis, respectively, based on an instance segmentation module and a novel weakly supervised Macro-Micro Aggregation (MMA) module. Subsequently, we construct classic machine learning models to predict the degree of DKD based on three selected pathological indicators via factor analysis. These corresponding modules are trained and tested on a total of 281 whole slide images (WSIs) digitized from two hospitals with different scanners. Our designed AI framework achieved inspiring results with 0.926 mIoU for glomerulus segmentation, and 0.899 F1 score for glomerulus classification in the external testing dataset. Meantime, the visualized results of the MMA module could reflect the location of the lesions. The performance of predicting disease achieved the F1 score of 0.917, which further proved the effectiveness of our AI-driven quantification of pathological indicators. Additionally, the interpretation of the machine learning model with the SHAP method showed similar accordance with the development of DKD in pathology. In conclusion, the proposed auxiliary diagnostic technologies have the feasibility for quantitative analysis of glomerular pathological tissues and alterations in DKD. Pathological quantitative indicators will also make it more convenient to provide doctors with assistance in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸鱼发布了新的文献求助10
1秒前
Orange应助CUI采纳,获得10
1秒前
杨树下完成签到,获得积分10
2秒前
夏侯无色完成签到,获得积分10
2秒前
2秒前
小乖完成签到,获得积分10
3秒前
chen完成签到 ,获得积分10
4秒前
传奇3应助不再方里采纳,获得10
5秒前
5秒前
angle完成签到 ,获得积分10
5秒前
科研通AI6应助笑点低黄豆采纳,获得10
5秒前
青春梦完成签到,获得积分10
5秒前
下论文完成签到,获得积分10
5秒前
FX1688完成签到 ,获得积分10
6秒前
6秒前
俏俏6325完成签到,获得积分20
6秒前
7秒前
yonglong发布了新的文献求助10
9秒前
wlscj应助yourenpkma123采纳,获得20
9秒前
10秒前
hzy6688应助浑天与采纳,获得10
10秒前
科研小白发布了新的文献求助10
10秒前
10秒前
11秒前
科研通AI6应助Sunny采纳,获得10
11秒前
ulung完成签到 ,获得积分10
12秒前
欧皇发布了新的文献求助20
13秒前
14秒前
博慧完成签到 ,获得积分10
14秒前
fanzi发布了新的文献求助10
15秒前
四叶草哦完成签到,获得积分10
15秒前
富华路完成签到,获得积分10
15秒前
16秒前
PPT完成签到,获得积分10
17秒前
苏河ever完成签到 ,获得积分10
17秒前
111关闭了111文献求助
17秒前
良良丸发布了新的文献求助10
17秒前
17秒前
18秒前
jelly10应助Lny采纳,获得20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272745
求助须知:如何正确求助?哪些是违规求助? 4429901
关于积分的说明 13790393
捐赠科研通 4308411
什么是DOI,文献DOI怎么找? 2364238
邀请新用户注册赠送积分活动 1359834
关于科研通互助平台的介绍 1322811