Endoscopic Rectal Ultrasound‐Based Radiomics Analysis for the Prediction of Synchronous Liver Metastasis in Patients With Primary Rectal Cancer

医学 无线电技术 逻辑回归 接收机工作特性 结直肠癌 放射科 超声波 临床试验 队列 内科学 肿瘤科 癌症
作者
Meiyan Mou,Ruizhi Gao,Yuquan Wu,Peng Lin,Hongxia Yin,Fenghuan Chen,Fen Huang,Rong Wen,Hong Yang,Yun He
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
被引量:2
标识
DOI:10.1002/jum.16369
摘要

Objectives To develop and validate an ultrasound‐based radiomics model to predict synchronous liver metastases (SLM) in rectal cancer (RC) patients preoperatively. Methods Two hundred and thirty‐nine RC patients were included in this study and randomly divided into training and validation cohorts. A total of 5936 radiomics features were calculated on the basis of ultrasound images to build a radiomic model and obtain a radiomics score (Rad‐score) using logistic regression. Meanwhile, clinical characteristics were collected to construct a clinical model. The radiomics–clinical model was developed and validated by integrating the radiomics features with the selected clinical characteristics. The performances of three models were evaluated and compared through their discrimination, calibration, and clinical usefulness. Results The radiomics model was developed based on 13 radiomic features. The radiomics–clinical model, which incorporated Rad‐score, CEA, and CA199, exhibited favorable discrimination and calibration with areas under the receiver operating characteristic curve (AUC) of 0.920 (95% CI: 0.874–0.965) in the training cohorts and 0.855 (95% CI: 0.759–0.951) in the validation cohorts. And the AUC of the radiomics–clinical model was 0.849 (95% CI: 0.771–0.927) for the training cohorts and 0.780 (95% CI: 0.655–0.905) for the validation cohorts, the clinical model was 0.811 (95% CI: 0.718–0.905) for the training cohorts and 0.805 (95% CI: 0.645–0.965) for the validation cohorts. Moreover, decision curve analysis (DCA) further confirmed the clinical utility of the radiomics–clinical model. Conclusions The radiomics–clinical model performed satisfactory predictive performance, which can help improve clinical diagnosis performance and outcome prediction for SLM in RC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pinging完成签到,获得积分10
2秒前
干净元槐发布了新的文献求助10
3秒前
ZM完成签到,获得积分10
3秒前
zhou完成签到,获得积分10
4秒前
xcltzh1296完成签到,获得积分10
4秒前
Jarvis应助似水流年采纳,获得100
5秒前
Leo发布了新的文献求助10
6秒前
6秒前
现代的曲奇完成签到 ,获得积分10
9秒前
脑洞疼应助lql采纳,获得10
11秒前
11秒前
852应助读书的时候采纳,获得10
11秒前
待烟散尽云起时完成签到,获得积分10
12秒前
13秒前
槲寄生完成签到,获得积分10
13秒前
CAOHOU应助mkk采纳,获得10
14秒前
北过完成签到,获得积分10
14秒前
饶天源发布了新的文献求助10
14秒前
腻腻发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
yishang发布了新的文献求助10
19秒前
科目三应助李润泽采纳,获得10
20秒前
CDreamY完成签到,获得积分10
25秒前
执着三毒完成签到 ,获得积分10
25秒前
26秒前
26秒前
freefys发布了新的文献求助10
26秒前
干净元槐完成签到,获得积分20
26秒前
marcg4应助suian采纳,获得10
26秒前
酷拽小茄发布了新的文献求助10
27秒前
27秒前
29秒前
今后应助南北采纳,获得10
29秒前
wanci应助读书的时候采纳,获得10
29秒前
29秒前
潇湘魂完成签到,获得积分10
31秒前
31秒前
32秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079535
求助须知:如何正确求助?哪些是违规求助? 3619017
关于积分的说明 11484999
捐赠科研通 3335253
什么是DOI,文献DOI怎么找? 1833464
邀请新用户注册赠送积分活动 902582
科研通“疑难数据库(出版商)”最低求助积分说明 821162