Image quality evaluation method for surface crack detection based on standard test chart

计算机科学 计算机视觉 人工智能 图表 缩放 图像质量 能见度 噪音(视频) 过程(计算) 镜头(地质) 图像(数学) 工程类 数学 石油工程 统计 操作系统 光学 物理
作者
Zhiheng Zhu,Dongliang Huang,Xuanyi Zhou,Dingping Chen,Jinyang Fu,Junsheng Yang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (9): 1294-1317 被引量:3
标识
DOI:10.1111/mice.13110
摘要

Abstract The use of automated equipment for surface crack detection based on digital image acquisition is becoming increasingly popular in the inspection industry. While researchers typically focus on improving the accuracy of recognition methods, the image quality is essential to the effectiveness of the algorithm. However, evaluating the quality of crack images has received little attention in computer‐aided civil and infrastructure engineering. A prominent issue is whether surface cracks are visible and measurable in images. This study proposes an image quality evaluation method using an original standard test chart that simulates cracks of different widths and directions. Geometric transformations and preprocessing techniques are employed in a full‐reference strategy to process the acquired crack images. The resulting information provides quantitative scores for crack visibility and measurability. The proposed Crack Structural Similarity Index is more in line with human perception and offers an accurate evaluation of real image quality. The study shows that Gaussian blur disturbance and random noise disturbance primarily affect measurability and visibility, respectively. Furthermore, the study finds that the quality of the crack image improves with increasing sensor pixel size and using a prime lens over a zoom or long zoom lens. This approach enables comparing image quality collected by different devices in the field environment and provides guidance for optimizing field acquisition parameters. In the future, the results of this study can be applied to facilitate the application of automated testing equipment and improve overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
小花排草应助科研通管家采纳,获得30
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
机灵柚子应助科研通管家采纳,获得10
刚刚
刚刚
隐形曼青应助科研通管家采纳,获得30
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
杂面饼子发布了新的文献求助10
2秒前
3秒前
4秒前
hd发布了新的文献求助10
4秒前
所所应助研友_LB3mkn采纳,获得10
5秒前
6秒前
6秒前
老豆芽24完成签到,获得积分10
7秒前
7秒前
文艺稚晴完成签到 ,获得积分10
7秒前
8秒前
11秒前
大气乐儿发布了新的文献求助10
11秒前
11秒前
13秒前
suzhenyue应助whiteandpink098采纳,获得20
14秒前
Khan发布了新的文献求助10
14秒前
15秒前
16秒前
anna1992发布了新的文献求助10
17秒前
19秒前
李健的粉丝团团长应助LGL采纳,获得10
19秒前
19秒前
19秒前
yyru发布了新的文献求助10
20秒前
三土有兀完成签到 ,获得积分10
21秒前
穿林打夜发布了新的文献求助10
22秒前
科研通AI2S应助旷野采纳,获得10
23秒前
欢呼的井发布了新的文献求助10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154217
求助须知:如何正确求助?哪些是违规求助? 3690066
关于积分的说明 11656614
捐赠科研通 3382314
什么是DOI,文献DOI怎么找? 1856062
邀请新用户注册赠送积分活动 917672
科研通“疑难数据库(出版商)”最低求助积分说明 831094