Hybrid deep multi-task learning radiomics approach for predicting EGFR mutation status of non-small cell lung cancer in CT images

队列 接收机工作特性 无线电技术 人工智能 肺癌 特征(语言学) 深度学习 医学 肿瘤科 计算机科学 放射科 内科学 语言学 哲学
作者
Jing Gong,Fangqiu Fu,Xiaowen Ma,Ting Wang,Xiangyi Ma,Chao You,Yang Zhang,Weijun Peng,Haiquan Chen,Yajia Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (24): 245021-245021 被引量:2
标识
DOI:10.1088/1361-6560/ad0d43
摘要

Abstract Objective. Epidermal growth factor receptor (EGFR) mutation genotyping plays a pivotal role in targeted therapy for non-small cell lung cancer (NSCLC). We aimed to develop a computed tomography (CT) image-based hybrid deep radiomics model to predict EGFR mutation status in NSCLC and investigate the correlations between deep image and quantitative radiomics features. Approach. First, we retrospectively enrolled 818 patients from our centre and 131 patients from The Cancer Imaging Archive database to establish a training cohort ( N = 654), an independent internal validation cohort ( N = 164) and an external validation cohort ( N = 131). Second, to predict EGFR mutation status, we developed three CT image-based models, namely, a multi-task deep neural network (DNN), a radiomics model and a feature fusion model. Third, we proposed a hybrid loss function to train the DNN model. Finally, to evaluate the model performance, we computed the areas under the receiver operating characteristic curves (AUCs) and decision curve analysis curves of the models. Main results. For the two validation cohorts, the feature fusion model achieved AUC values of 0.86 ± 0.03 and 0.80 ± 0.05, which were significantly higher than those of the single-task DNN and radiomics models (all P < 0.05). There was no significant difference between the feature fusion and the multi-task DNN models ( P > 0.8). The binary prediction scores showed excellent prognostic value in predicting disease-free survival ( P = 0.02) and overall survival ( P < 0.005) for validation cohort 2. Significance. The results demonstrate that (1) the feature fusion and multi-task DNN models achieve significantly higher performance than that of the conventional radiomics and single-task DNN models, (2) the feature fusion model can decode the imaging phenotypes representing NSCLC heterogeneity related to both EGFR mutation and patient NSCLC prognosis, and (3) high correlations exist between some deep image and radiomics features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云木完成签到 ,获得积分10
1秒前
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Ankher应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
夕诙应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
青羽凌雪应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助柒咩咩采纳,获得10
4秒前
abc123完成签到,获得积分10
5秒前
5秒前
科研小天才完成签到,获得积分10
5秒前
河镜发布了新的文献求助30
8秒前
11秒前
13秒前
14秒前
江流有声完成签到 ,获得积分10
15秒前
dennisysz发布了新的文献求助30
15秒前
彭洪凯完成签到,获得积分10
16秒前
kento应助最爱吃火锅采纳,获得200
16秒前
齐天大圣完成签到,获得积分10
17秒前
外向宛菡发布了新的文献求助10
18秒前
jahcenia发布了新的文献求助10
19秒前
liu完成签到,获得积分10
21秒前
思源应助七安采纳,获得10
23秒前
28秒前
Steven驳回了Fitz应助
32秒前
liu发布了新的文献求助10
33秒前
仙女完成签到 ,获得积分10
34秒前
39秒前
隐形曼青应助妮宝采纳,获得10
41秒前
Django发布了新的文献求助10
42秒前
dove_min070809完成签到 ,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211514
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667104
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103