GPX4
细胞凋亡
下调和上调
细胞生物学
药理学
程序性细胞死亡
信号转导
癌症研究
生物
化学
氧化应激
生物化学
谷胱甘肽过氧化物酶
超氧化物歧化酶
基因
作者
Xin Lin,Zhao Xiaoxia,Qingfeng Chen,Xiaoyue Wang,Yongya Wu,Hao Zhao
标识
DOI:10.3892/ijmm.2023.5319
摘要
Sepsis‑induced cardiomyopathy (SIC) is a manifestation of multiple organ failure as a result of sepsis and is a serious threat to life. Here, the effect and mechanisms of quercetin (QUE) in SIC were assessed. It was found that patients with SIC expressed lower serum levels of glutathione peroxidase 4 (GPX4) and SIRT1 but higher levels of CK‑MB, cTnI, TNF‑α, and IL‑6 compared with healthy individuals. A dose of 80 µM QUE increased the viability and reduced the ferroptosis of H9C2 cells treated with 1.0 µg/ml LPS in vitro. The administration of QUE decreased the levels of MDA, NADPH, lipid peroxidation and cytoplasmic cytochrome C and upregulated the levels of GSH and TOM 20, thus exerting an anti‑oxidative effect via mediating SIRT1 expression. It also activated the SIRT1/p53/SLC7A11 signaling pathway to reduce cellular Fe2+ and PTGS2 levels, decreased cell apoptosis rate, and upregulated the levels of GPX4 and ferritin to inhibit ferroptosis of H9C2 cells in vitro. Injection of QUE into rats activated the SIRT1/p53/SLC7A11 signaling pathway, reduced the levels of CK‑MB, cTnI, inflammatory cell infiltration, MDA, NADPH, cytoplasmic cytochrome C, cellular Fe2+, and PTGS2 but upregulated the levels of GSH, TOM 20, GPX4, and ferritin to alleviate SIC in a dose‑dependent manner in vivo. To conclude, QUE exerted an anti‑ferroptotic effect via activation of the SIRT1/p53/SLC7A11 signaling pathway to dampen SIC both in vivo and in vitro. These findings highlighted a potential therapeutic strategy for the management of SIC.
科研通智能强力驱动
Strongly Powered by AbleSci AI