DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence

人工智能 计算机科学 机器学习 深度学习 癌症检测 肺癌 癌症 医学 病理 内科学
作者
Niyaz Ahmad Wani,Ravinder Kumar,Jatin Bedi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107879-107879 被引量:43
标识
DOI:10.1016/j.cmpb.2023.107879
摘要

Artificial intelligence (AI) has several uses in the healthcare industry, some of which include healthcare management, medical forecasting, practical making of decisions, and diagnosis. AI technologies have reached human-like performance, but their use is limited since they are still largely viewed as opaque black boxes. This distrust remains the primary factor for their limited real application, particularly in healthcare. As a result, there is a need for interpretable predictors that provide better predictions and also explain their predictions.This study introduces "DeepXplainer", a new interpretable hybrid deep learning-based technique for detecting lung cancer and providing explanations of the predictions. This technique is based on a convolutional neural network and XGBoost. XGBoost is used for class label prediction after "DeepXplainer" has automatically learned the features of the input using its many convolutional layers. For providing explanations or explainability of the predictions, an explainable artificial intelligence method known as "SHAP" is implemented.The open-source "Survey Lung Cancer" dataset was processed using this method. On multiple parameters, including accuracy, sensitivity, F1-score, etc., the proposed method outperformed the existing methods. The proposed method obtained an accuracy of 97.43%, a sensitivity of 98.71%, and an F1-score of 98.08. After the model has made predictions with this high degree of accuracy, each prediction is explained by implementing an explainable artificial intelligence method at both the local and global levels.A deep learning-based classification model for lung cancer is proposed with three primary components: one for feature learning, another for classification, and a third for providing explanations for the predictions made by the proposed hybrid (ConvXGB) model. The proposed "DeepXplainer" has been evaluated using a variety of metrics, and the results demonstrate that it outperforms the current benchmarks. Providing explanations for the predictions, the proposed approach may help doctors in detecting and treating lung cancer patients more effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI6应助陈涛采纳,获得10
1秒前
传奇3应助刘天歌采纳,获得10
1秒前
1秒前
一切都会好起来的完成签到,获得积分10
2秒前
美丽心情完成签到,获得积分10
2秒前
lu1020发布了新的文献求助30
2秒前
科研通AI2S应助majf采纳,获得10
2秒前
Ulrica完成签到,获得积分10
3秒前
晚秋发布了新的文献求助10
3秒前
marco完成签到 ,获得积分10
4秒前
4秒前
sunny完成签到,获得积分10
4秒前
Xmy发布了新的文献求助10
5秒前
5秒前
MaskRuin完成签到,获得积分10
5秒前
6秒前
Ava应助猫猫球拯救世界采纳,获得30
6秒前
液晶屏99完成签到,获得积分10
7秒前
半生瓜完成签到 ,获得积分10
8秒前
火星上的一斩完成签到 ,获得积分10
8秒前
muzi完成签到,获得积分10
9秒前
舒心聪展完成签到,获得积分10
9秒前
10秒前
Scss完成签到,获得积分10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
刘1完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
临床小白发布了新的文献求助10
10秒前
寻找组织应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
寻找组织应助科研通管家采纳,获得20
10秒前
wanci应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
yang应助科研通管家采纳,获得10
10秒前
summer应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498807
求助须知:如何正确求助?哪些是违规求助? 4595945
关于积分的说明 14450883
捐赠科研通 4528942
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438682