Reliability Prediction Based on SVR and Improved SCSO

可靠性(半导体) 支持向量机 计算机科学 均方误差 数据挖掘 滑动窗口协议 可靠性工程 人工智能 工程类 数学 统计 窗口(计算) 功率(物理) 物理 量子力学 操作系统
作者
Xiaojun Bai,Hongyue Liu,Gong Meng
标识
DOI:10.1109/iccnea60107.2023.00025
摘要

Reliability prediction can provide basis for the identification of potential improvement area, cost control, and mission reliability assessment, etc. However, for complex equipment, there are many reliability influencing factors and incomplete knowledge of failure causes, which lead to a significant disparity between the predicted outcomes and the real values for traditional reliability prediction methods. To address the above issues, this research paper introduces an approach that utilizes the Support Vector Regression (SVR) model and Sand Cat Swarm Optimization (SCSO). To begin with, the sliding window technique is employed on the historical reliability data to generate time series samples, with the 5 adjacent data as sample data, and the sixth as label of the sample, and train SVR model on these samples; Second, the SVR model parameters are optimized using the ISCSO algorithm to obtain the optimal combination of parameters. In the testing stage, firstly, historical reliability data was used to predicted future data by the model, and the predicted data are then added to the sequence to form new samples, thus old data are discarded and new data are predicted continuously to realize continuous reliability prediction. Finally, the algorithm proposed in this paper is validated on a diesel engine reliability dataset. The algorithm proposed in this paper demonstrates its superiority through the Normalized Root Mean Squared Error (NRMSE) evaluation. The NRMSE of SVR-ISCSO is 8.86E-05, showcasing a remarkable 99.24% year-on-year decrease compared to the standard SVR. Additionally, it exhibits a 5.86% year-on-year decrease compared to SVR-SCSO, further validating the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
飞快的外套完成签到 ,获得积分10
1秒前
zu完成签到 ,获得积分10
1秒前
3秒前
菲菲完成签到,获得积分10
3秒前
心斋完成签到,获得积分10
4秒前
黄晨雅发布了新的文献求助10
4秒前
5秒前
tivyg'lk完成签到,获得积分10
6秒前
7秒前
7秒前
TKTKW发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
烟花应助诚心山灵采纳,获得10
9秒前
9秒前
12秒前
Clarence完成签到,获得积分10
13秒前
天真台灯完成签到 ,获得积分10
13秒前
SciGPT应助小米采纳,获得10
13秒前
卫邴ken发布了新的文献求助10
13秒前
15秒前
rudjs完成签到,获得积分10
15秒前
樱花出行中完成签到,获得积分10
16秒前
vickki发布了新的文献求助10
17秒前
Grace159完成签到 ,获得积分10
17秒前
ENIX完成签到 ,获得积分10
17秒前
18秒前
玄风应助wangkuo采纳,获得10
18秒前
安详冰夏完成签到,获得积分10
19秒前
19秒前
21秒前
23秒前
liuyang发布了新的文献求助10
23秒前
不安的宛丝完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
科研通AI2S应助joker采纳,获得10
27秒前
27秒前
诚心山灵发布了新的文献求助10
28秒前
isasi完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495384
求助须知:如何正确求助?哪些是违规求助? 4593053
关于积分的说明 14439596
捐赠科研通 4525892
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464570
关于科研通互助平台的介绍 1437425