Improvement of DBSCAN Algorithm Based on K-Dist Graph for Adaptive Determining Parameters

数据库扫描 聚类分析 算法 计算机科学 图形 确定数据集中的群集数 模式识别(心理学) 航程(航空) 数学 人工智能 CURE数据聚类算法 相关聚类 材料科学 理论计算机科学 复合材料
作者
Lifeng Yin,Hongtao Hu,Kunpeng Li,Guanghai Zheng,Yingwei Qu,Huayue Chen
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (15): 3213-3213 被引量:4
标识
DOI:10.3390/electronics12153213
摘要

For the shortcomings of an unstable clustering effect and low accuracy caused by the manual setting of the two parameters Eps and MinPts of the DBSCAN (density-based spatial clustering of applications with noise) algorithm, this paper proposes an adaptive determination method for DBSCAN algorithm parameters based on the K-dist graph, noted as X-DBSCAN. The algorithm uses the least squares polynomial curve fitting method to fit the curve in the K-dist graph to generate a list of candidate Eps parameters and uses the mathematical expectation method and noise reduction threshold to generate the corresponding MinPts parameter list. According to the clustering results of each group of parameters in the Eps and MinPts parameter lists, a stable range of cluster number changes is found, and the MinPts and Eps corresponding to the maximum K value in the stable range are selected as the optimal algorithm parameters. The optimality of this parameter was verified using silhouette coefficients. A variety of experiments were designed from multiple angles on the artificial dataset and the UCI real dataset. The experimental results show that the clustering accuracy of X-DBSCAN was 21.83% and 15.52% higher than that of DBSCAN on the artificial and real datasets, respectively. The X-DBSCAN algorithm was also superior to other algorithms through comprehensive evaluation and analysis of various clustering indicators. In addition, experiments on four synthetic Gaussian datasets of different dimensions showed that the average clustering indices of the proposed algorithm were above 0.999. The X-DBSCAN algorithm can select parameters adaptively in combination with the characteristics of the dataset; the clustering effect is better, and clustering process automation is realized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
馒头完成签到,获得积分20
2秒前
Jasper应助Zoe采纳,获得30
2秒前
3秒前
英俊延恶发布了新的文献求助10
3秒前
芜湖完成签到 ,获得积分10
3秒前
lin完成签到,获得积分10
5秒前
zy发布了新的文献求助10
6秒前
CodeCraft应助QIN采纳,获得10
8秒前
9秒前
馒头发布了新的文献求助10
10秒前
星辰大海应助youasheng采纳,获得10
10秒前
小鲟鱼完成签到 ,获得积分10
11秒前
12秒前
小风铃完成签到,获得积分20
12秒前
12秒前
打打应助123xcv采纳,获得10
12秒前
什么李发布了新的文献求助10
14秒前
dwfwq发布了新的文献求助10
14秒前
15秒前
猕猴桃发布了新的文献求助10
15秒前
000发布了新的文献求助10
16秒前
terry完成签到 ,获得积分10
17秒前
18秒前
Li发布了新的文献求助50
18秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
hanawang应助科研通管家采纳,获得30
19秒前
柯一一应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
19秒前
伶俐妙海应助科研通管家采纳,获得20
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
20秒前
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923856
求助须知:如何正确求助?哪些是违规求助? 3468635
关于积分的说明 10953090
捐赠科研通 3197932
什么是DOI,文献DOI怎么找? 1766867
邀请新用户注册赠送积分活动 856568
科研通“疑难数据库(出版商)”最低求助积分说明 795498