Deep Learning Video Classification of Lung Ultrasound Features Associated with Pneumonia

肺超声 肺炎 人工智能 杠杆(统计) 计算机科学 深度学习 医学 机器学习 放射科 重症监护医学 超声波 内科学
作者
Daniel E. Shea,Sourabh Kulhare,Rachel Millin,Zohreh Laverriere,Courosh Mehanian,Charles B. Delahunt,Dipayan Banik,Xinliang Zheng,Meihua Zhu,Ye Ji,Truls Østbye,Martha-Marie S Mehanian,Atinuke Uwajeh,Adeseye Michael Akinsete,Fen Wang,Matthew P. Horning
标识
DOI:10.1109/cvprw59228.2023.00312
摘要

Ultrasound (US) imaging holds promise as a low-cost versatile, non-invasive point-of-care diagnostic modality in low-and middle-income countries (LMICs). Still, lung US can be challenging to interpret because air bronchograms are anechoic and the US images mostly contain artifacts rather than lung anatomy. To help overcome these barriers, advances in computer vision and machine learning (ML) provide tools to automatically recognize abnormal US lung features, offering valuable information to healthcare workers for point-of-care diagnosis. This paper describes deep learning algorithms that target three key US features associated with lung pathology: pleural effusion, lung consolidation, and B-lines. The algorithms were developed and validated using a large and varied dataset of 22,400 US lung scans (videos) from 762 patients of all ages (newborn to adult) in Nigeria and China. The architectures include effective methods for leveraging frame-level and video-level annotations, are light enough to deploy on mobile or embedded devices and have high accuracy (e.g., AUCs ≈ 0.9). Coupled with portable US devices, we demonstrate that they can provide expert-level clinical assistance for diagnosis of pneumonia, which is the leading cause of both childhood mortality and adult hospitalization in LMICs. We also discuss some of the challenges associated with determining ground truth for pneumonia, which impact the question of how to leverage ML models for lung US to support clinical diagnosis of pneumonia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL完成签到,获得积分10
1秒前
令狐剑通发布了新的文献求助10
2秒前
HE完成签到,获得积分10
2秒前
rajvsvj完成签到,获得积分10
3秒前
3秒前
3秒前
万仁杰完成签到 ,获得积分10
4秒前
彭于晏应助毛毛采纳,获得10
4秒前
星月相遂完成签到,获得积分10
5秒前
5秒前
懒羊羊发布了新的文献求助10
6秒前
8秒前
qiulong发布了新的文献求助10
8秒前
务实青筠发布了新的文献求助10
10秒前
璐宝完成签到,获得积分10
10秒前
11秒前
善学以致用应助张欣童666采纳,获得10
11秒前
酷波er应助小王同学采纳,获得10
12秒前
13秒前
吟诵月光完成签到,获得积分10
14秒前
14秒前
MRM发布了新的文献求助10
16秒前
1234完成签到,获得积分10
17秒前
动漫大师发布了新的文献求助10
18秒前
18秒前
希望天下0贩的0应助jify采纳,获得10
18秒前
上官若男应助jify采纳,获得10
18秒前
FelixChen应助yueyue采纳,获得10
19秒前
好运绵绵完成签到 ,获得积分10
21秒前
123完成签到,获得积分10
24秒前
24秒前
Adeline发布了新的文献求助10
24秒前
令狐剑通完成签到,获得积分10
24秒前
25秒前
26秒前
乔乔发布了新的文献求助10
27秒前
小二郎应助冷艳的孤晴采纳,获得10
31秒前
安东尼发布了新的文献求助10
32秒前
Johnason_ZC完成签到 ,获得积分10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451