What's in the black box? How algorithmic knowledge promotes corrective and restrictive actions to counter misinformation in the USA, the UK, South Korea and Mexico

误传 社会化媒体 适度 政府(语言学) 独创性 心理学 价值(数学) 社会心理学 计算机科学 计算机安全 万维网 创造力 语言学 机器学习 哲学
作者
Myojung Chung
出处
期刊:Internet Research [Emerald Publishing Limited]
卷期号:33 (5): 1971-1989 被引量:9
标识
DOI:10.1108/intr-07-2022-0578
摘要

Purpose While there has been a growing call for insights on algorithms given their impact on what people encounter on social media, it remains unknown how enhanced algorithmic knowledge serves as a countermeasure to problematic information flow. To fill this gap, this study aims to investigate how algorithmic knowledge predicts people's attitudes and behaviors regarding misinformation through the lens of the third-person effect. Design/methodology/approach Four national surveys in the USA (N = 1,415), the UK (N = 1,435), South Korea (N = 1,798) and Mexico (N = 784) were conducted between April and September 2021. The survey questionnaire measured algorithmic knowledge, perceived influence of misinformation on self and others, intention to take corrective actions, support for government regulation and content moderation. Collected data were analyzed using multigroup SEM. Findings Results indicate that algorithmic knowledge was associated with presumed influence of misinformation on self and others to different degrees. Presumed media influence on self was a strong predictor of intention to take actions to correct misinformation, while presumed media influence on others was a strong predictor of support for government-led platform regulation and platform-led content moderation. There were nuanced but noteworthy differences in the link between presumed media influence and behavioral responses across the four countries studied. Originality/value These findings are relevant for grasping the role of algorithmic knowledge in countering rampant misinformation on social media, as well as for expanding US-centered extant literature by elucidating the distinctive views regarding social media algorithms and misinformation in four countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Buxi完成签到,获得积分10
2秒前
Hodlumm发布了新的文献求助10
2秒前
大力的含卉完成签到,获得积分10
4秒前
4秒前
隐形曼青应助七七采纳,获得10
4秒前
oO完成签到 ,获得积分10
5秒前
5秒前
6秒前
发发发布了新的文献求助10
7秒前
zhang发布了新的文献求助10
7秒前
Phoenix ZHANG发布了新的文献求助10
9秒前
充电宝应助糊涂的大象采纳,获得10
11秒前
搞怪靖发布了新的文献求助10
11秒前
Hodlumm完成签到,获得积分10
12秒前
13秒前
小厮完成签到,获得积分10
13秒前
14秒前
D调的华丽完成签到,获得积分10
15秒前
16秒前
灯光师发布了新的文献求助10
17秒前
sugar发布了新的文献求助10
17秒前
七七发布了新的文献求助10
18秒前
Yun发布了新的文献求助30
18秒前
打一豆豆发布了新的文献求助10
20秒前
LMN完成签到,获得积分10
20秒前
小王同志完成签到,获得积分10
21秒前
四辈完成签到,获得积分10
22秒前
小马甲应助sugar采纳,获得10
23秒前
wanci应助文子采纳,获得10
23秒前
科研通AI5应助俭朴新之采纳,获得30
24秒前
桐桐应助开朗书白采纳,获得10
24秒前
完美世界应助俭朴新之采纳,获得10
24秒前
Orange应助俭朴新之采纳,获得10
24秒前
NexusExplorer应助俭朴新之采纳,获得10
24秒前
Lucy59完成签到,获得积分10
24秒前
浮游应助小西采纳,获得10
25秒前
ww发布了新的文献求助10
26秒前
Lucy59发布了新的文献求助10
28秒前
subohr完成签到,获得积分10
28秒前
傻傻的夜柳完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4769054
求助须知:如何正确求助?哪些是违规求助? 4105314
关于积分的说明 12699354
捐赠科研通 3823522
什么是DOI,文献DOI怎么找? 2110144
邀请新用户注册赠送积分活动 1134535
关于科研通互助平台的介绍 1015920