Low-Noise Path Planning for Urban Drone Missions: Acoustic Ray Tracing and DDPG Algorithm

无人机 运动规划 光线追踪(物理) 噪音(视频) 计算机科学 路径(计算) 追踪 算法 声学 计算机视觉 人工智能 物理 光学 生物 遗传学 机器人 操作系统 图像(数学) 程序设计语言
作者
Marco Rinaldi,Stefano Primatesta,Giorgio Guglieri
出处
期刊:Journal of the Royal Aeronautical Society [Cambridge University Press]
卷期号:: 1-23
标识
DOI:10.1017/aer.2025.10054
摘要

Abstract This paper presents a comprehensive approach for mitigating noise pollution from unmanned aerial vehicles (UAVs) in urban environment through path planning using reinforcement learning (RL). The study focuses on Turin, Italy, leveraging its diverse urban architecture to develop a comprehensive model. A detailed 3D occupancy grid map, based on OpenStreetMap data, was created to represent buildings’ locations and heights while a population density map was developed to account for demographic variances. The research develops a dynamic noise source model that adjusts noise emission levels based on UAV velocity, ensuring realistic noise impact predictions. Acoustic ray tracing techniques are utilised to simulate noise propagation, accounting for atmospheric absorption and reflections from urban structures, providing a detailed analysis of noise distribution. The core of this work is the application of the deep deterministic policy gradient (DDPG) algorithm within the RL framework. The algorithm is tailored to optimise flight paths by minimising noise impact while balancing other factors like path length and energy efficiency. The RL agent learns to navigate complex urban landscapes, integrating penalties for idling, excessive path length and abrupt manoeuvers to refine its path planning strategy. Simulation results with several maps unseen during training reveal that the RL-based approach effectively reduces noise impact in urban settings, making it a viable solution for better integrating UAVs into urban air mobility (UAM) systems. The methodology is scalable and adaptable, with potential applications in various urban environments globally. This research contributes to the development of sustainable drone operations in UAM context by addressing the critical issue of noise pollution, enhancing public acceptance and regulatory compliance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Akim应助一个冷漠无情的人采纳,获得10
1秒前
hexiang完成签到,获得积分10
1秒前
所所应助yanne采纳,获得10
1秒前
年轻河马发布了新的文献求助10
3秒前
问雁发布了新的文献求助10
4秒前
wudizhuzhu233发布了新的文献求助10
5秒前
李华完成签到,获得积分10
5秒前
禹映安发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
烟花应助林lin采纳,获得10
8秒前
FashionBoy应助言多必失采纳,获得10
10秒前
irenelijiaaa发布了新的文献求助10
10秒前
Morii完成签到 ,获得积分10
10秒前
10秒前
11秒前
BLY完成签到,获得积分20
12秒前
12秒前
王小明发布了新的文献求助10
14秒前
Lucas应助可爱冰绿采纳,获得10
14秒前
cjx发布了新的文献求助10
15秒前
AteeqBaloch完成签到,获得积分10
15秒前
15秒前
艺阳发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
Jacky应助JiaY采纳,获得10
16秒前
17秒前
17秒前
18秒前
18秒前
576-576完成签到 ,获得积分10
18秒前
19秒前
19秒前
Kelly发布了新的文献求助10
21秒前
研友_VZG7GZ应助甜甜醉香采纳,获得10
21秒前
22秒前
情怀应助子子子子瞻采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474151
求助须知:如何正确求助?哪些是违规求助? 4575997
关于积分的说明 14356041
捐赠科研通 4503822
什么是DOI,文献DOI怎么找? 2467785
邀请新用户注册赠送积分活动 1455585
关于科研通互助平台的介绍 1429599