过电位
双功能
析氧
材料科学
电催化剂
催化作用
化学工程
双功能催化剂
电池(电)
纳米技术
基质(水族馆)
电极
化学
电化学
有机化学
物理化学
量子力学
工程类
物理
海洋学
地质学
功率(物理)
作者
Jongkyoung Kim,Je Min Yu,Jun‐Yong Choi,Seong‐Hun Lee,Han Uk Lee,Dongrak Oh,Hyunju Go,Wonsik Jang,Seunghyun Lee,Jaewon Cho,Sung Beom Cho,Tae Joo Shin,Hyunjoo Lee,Sang‐Goo Lee,Ji‐Wook Jang,Seungho Cho,Wook Jo
标识
DOI:10.1002/advs.202506172
摘要
Abstract Efficient and robust bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are critical for high‐performance zinc‐air batteries (ZABs). However, balancing OER and ORR activity in a single catalyst remains challenging due to the different mechanisms during charging and discharging. Here, a scalable strategy is presented for enhancing both reactions by integrating two‐dimensional OER‐ and ORR‐active components onto a carbon‐based conductive substrate with abundant anchoring sites, via high‐shear exfoliation. The heterostructure catalyst demonstrates exceptional bifunctionality, achieving an extremely low overpotential difference of 0.63 V. First‐principles calculations confirm a strong chemical compatibility between the active components and substrate. In scaled‐up ZAB applications, the catalyst delivers a high peak power density of 1569 mW cm −2 , and an outstanding cycling stability over 300 h (1800 cycles). This work highlights a versatile approach for designing multifunctional electrocatalysts, advancing scalable energy conversion and storage technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI