Prognostic Utility of a Deep Learning Radiomics Nomogram Integrating Ultrasound and Multi‐Sequence MRI in Triple‐Negative Breast Cancer Treated with Neoadjuvant Chemotherapy

医学 列线图 磁共振成像 三阴性乳腺癌 一致性 放射科 乳腺癌 无线电技术 乳房磁振造影 超声波 肿瘤科 内科学 癌症 乳腺摄影术
作者
Cheng Chen,Peng Xiao,Kai Sang,Hongyan Zhao,Di Wu,Honge Li,Yan Wang,Wenrong Wang,Feng Xu,Jing-fang Zhao
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
标识
DOI:10.1002/jum.70054
摘要

Objective The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi‐sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple‐negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC). Methods This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers. Clinical and follow‐up data were collected to assess prognostic outcomes. Radiomics features were extracted from two‐dimensional ultrasound and three‐dimensional MRI images following image segmentation. A DLRN model was developed, and its prognostic performance was evaluated using the concordance index (C‐index) in comparison with alternative modeling approaches. Risk stratification for postoperative recurrence was subsequently performed, and recurrence and metastasis rates were compared between low‐ and high‐risk groups. Results The DLRN model demonstrated strong predictive capability for DFS (C‐index: 0.859–0.887) and moderate performance for overall survival (OS) (C‐index: 0.800–0.811). For DFS prediction, the DLRN model outperformed other models, whereas its performance in predicting OS was slightly lower than that of the combined MRI + US radiomics model. The 3‐year recurrence and metastasis rates were significantly lower in the low‐risk group than in the high‐risk group (21.43–35.71% vs 77.27–82.35%). Conclusion The preoperative DLRN model, integrating ultrasound and multi‐sequence MRI, shows promise as a prognostic tool for recurrence, metastasis, and survival outcomes in patients with TNBC undergoing NAC. The derived risk score may facilitate individualized prognostic evaluation and aid in preoperative risk stratification within clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
Bob发布了新的文献求助60
1秒前
idiom完成签到 ,获得积分10
1秒前
2秒前
NexusExplorer应助游婧采纳,获得10
2秒前
2秒前
2秒前
ppp完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
ainiyiyayou完成签到,获得积分20
4秒前
Ava应助xiuxiu采纳,获得10
5秒前
科目三应助大胆的大有采纳,获得10
6秒前
7秒前
eric888应助Criminology34采纳,获得300
7秒前
英吉利25发布了新的文献求助30
7秒前
阿萍发布了新的文献求助10
7秒前
orixero应助研友_qZ6V1Z采纳,获得30
7秒前
CipherSage应助麦克阿宇采纳,获得30
7秒前
乐乐应助旺仔采纳,获得10
8秒前
完美世界应助樊家圣采纳,获得10
9秒前
bkagyin应助upup小李采纳,获得20
9秒前
Co完成签到 ,获得积分10
10秒前
善学以致用应助ggdio采纳,获得10
11秒前
ainiyiyayou发布了新的文献求助30
11秒前
闪闪完成签到 ,获得积分10
12秒前
DrChen完成签到,获得积分10
12秒前
seven发布了新的文献求助10
13秒前
Dizzy_D关注了科研通微信公众号
14秒前
酷波er应助喜悦的海采纳,获得10
14秒前
情怀应助缥缈老九采纳,获得10
15秒前
17秒前
小鲤鱼本鱼完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
科研通AI5应助林川采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993138
求助须知:如何正确求助?哪些是违规求助? 4240931
关于积分的说明 13212856
捐赠科研通 4036337
什么是DOI,文献DOI怎么找? 2208385
邀请新用户注册赠送积分活动 1219402
关于科研通互助平台的介绍 1137670