Integrating single-cell RNA sequencing and artificial intelligence for multitargeted drug design for combating resistance in liver cancer

抗药性 药品 癌症 核糖核酸 计算生物学 癌症研究 医学 生物 药理学 基因 内科学 遗传学
作者
Houhong Wang,Youyuan Yang,Jun Zhang,Wenli Chen,Jingyou Dai,Changquan Li,Qing Li
出处
期刊:npj precision oncology [Springer Nature]
卷期号:9 (1): 309-309 被引量:1
标识
DOI:10.1038/s41698-025-00952-3
摘要

Hepatocellular carcinoma (HCC) is an aggressive and heterogeneous liver cancer with restricted therapy selections and poor diagnosis. Although there have been great advances in genomics, the molecular mechanisms essential to HCC progression are not yet fully implicit, particularly at the single-cell stage. This research utilized single-cell RNA sequencing technology to evaluate transcriptional heterogeneity, immune cell infiltration, and potential therapeutic targets in HCC. A detailed bioinformatics pipeline used in the experiment included quality control, feature selection, dimensionality reduction using Principal Component Analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), and t-distributed stochastic neighbor embedding (t-SNE), clustering, differential gene expression, pseudotime trajectory inference, and immune cell profiling with GSEA and survival analysis examining potential biomarkers of survival. Key findings include the identification of 1178 differentially expressed genes (DEGs), with macrophage infiltration contributing to immune evasion. Notably, APOE and ALB are linked to a better prognosis, while XIST and FTL are associated with poor survival. The potential drug candidates include IGMESINE in the case of SERPINA1 and PKR-A/MITZ for APOA2 in the gene-drug interaction analysis. Graph Neural Network (GNN) is used to predict drug-gene interactions and rank potential therapeutic candidates. The model shows robust predictive performance (R²: 0.9867, MSE: 0.0581) and identifies important drug candidates, such as Gadobenate Dimeglumine and Fluvastatin, and describes repurposing opportunities in network analysis, enhancing computational drug discovery for novel treatments. This research sheds new light on HCC tumor evolution, immune suppression, and the potential drug target based on the viewpoint of the importance of single-cell approaches in liver cancer research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达达发布了新的文献求助10
1秒前
科研通AI6应助学术版7e采纳,获得30
2秒前
酷炫思菱完成签到,获得积分20
3秒前
3秒前
yznfly应助vv采纳,获得200
3秒前
3秒前
冯梦颖发布了新的文献求助10
4秒前
4秒前
归尘发布了新的文献求助10
4秒前
4秒前
Mia完成签到,获得积分10
5秒前
Hello应助高xy采纳,获得30
5秒前
番茄炒蛋完成签到,获得积分10
5秒前
bkagyin应助超能流水少年采纳,获得10
5秒前
Leif应助_Forelsket_采纳,获得40
7秒前
8秒前
8秒前
听雨眠发布了新的文献求助10
8秒前
土豆晴发布了新的文献求助10
9秒前
w1完成签到,获得积分10
9秒前
10秒前
10秒前
十分喜欢发布了新的文献求助10
10秒前
斯文败类应助静默采纳,获得10
10秒前
11秒前
落幕之后完成签到,获得积分20
11秒前
开朗梦曼发布了新的文献求助10
11秒前
CC完成签到 ,获得积分10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
上官若男应助在在采纳,获得10
14秒前
14秒前
xin完成签到,获得积分10
15秒前
科研通AI6应助李四采纳,获得10
15秒前
16秒前
Hello应助失眠的耳机采纳,获得10
17秒前
Anita发布了新的文献求助10
17秒前
草莓发布了新的文献求助30
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039