Habitat‐based radiomic model for predicting muscle invasion in bladder cancer: A multi‐center study using enhanced‐CT and machine learning

膀胱癌 队列 医学 回顾性队列研究 栖息地 无线电技术 癌症 队列研究 放射科 机器学习 人工智能 内科学 肿瘤科 计算机科学 生物 生态学
作者
Yiheng Du,Hong Li,Yiqun Sui,Yongli Tao,Jin Cao,Xiang Jiang,Bo Wang,Boxin Xue
出处
期刊:Medical Physics [Wiley]
卷期号:52 (8): e18021-e18021
标识
DOI:10.1002/mp.18021
摘要

Abstract Background Accurate assessment of muscle invasion in bladder cancer is crucial for guiding treatment and prognosis. Habitat‐based radiomics, which accounts for tumor heterogeneity, may enhance evaluation of tumor status and outcomes. Purpose This research primarily investigates the efficacy of a novel habitat‐based radiomic model in predicting muscle invasion in bladder cancer. Methods We retrospectively analyzed 325 bladder cancer patients from two institutions (July 2018–July 2023). Patients were divided into a training cohort (231 cases, Institution 1) and an external test cohort (94 cases, Institution 2). CT images were standardized, and areas of interest (AOIs) were delineated. Nineteen texture features were extracted from each AOI, and K‐means clustering identified intratumoral habitats. Radiomic features from each habitat were extracted using PyRadiomics and used to build a habitat model with the ExtraTree algorithm. For comparison, we also developed uniphase, multiphase, and clinical models. Model performance was evaluated by sensitivity, specificity, accuracy, and area under the ROC curve (AUC). The Delong test compared diagnostic performance between models. Results Three distinct habitats were identified within bladder tumors. The habitat model achieved an AUC of 0.947 (95% CI: 0.911–0.982) in the training cohort and 0.825 (95% CI: 0.704–0.946) in the external test cohort. In the training cohort, the habitat model outperformed the uniphase ( p = 0.003), multiphase ( p = 0.036), and clinical models ( p = 0.049). The combined habitat and clinical model showed superior diagnostic performance compared to uniphase ( p = 0.019) and multiphase clinical ( p = 0.069) fusion models. The radiomics signature integrating habitat and multiphase features reliably predicted muscle invasion across the entire cohort (AUC = 0.922, 95% CI: 0.883–0.960). Conclusions Habitat‐based radiomic features combined with machine learning enable accurate preoperative prediction of muscle invasion in bladder cancer using CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小团子完成签到,获得积分10
刚刚
炸弹完成签到,获得积分20
1秒前
zxm666完成签到,获得积分10
1秒前
刘xiansheng完成签到,获得积分10
1秒前
杂兵甲发布了新的文献求助10
1秒前
1秒前
八九发布了新的文献求助10
2秒前
坦率白竹发布了新的文献求助100
2秒前
2秒前
dinghaifeng发布了新的文献求助10
2秒前
hxm完成签到,获得积分10
3秒前
3秒前
LZ发布了新的文献求助10
3秒前
4秒前
科研通AI6应助KK采纳,获得30
5秒前
清甯发布了新的文献求助10
5秒前
qiandi发布了新的文献求助10
6秒前
6秒前
8秒前
小马甲应助猫猫采纳,获得10
8秒前
好好发布了新的文献求助10
8秒前
希望天下0贩的0应助haodong采纳,获得10
8秒前
9秒前
9秒前
英俊的铭应助highkick采纳,获得10
10秒前
花开富贵发布了新的文献求助10
10秒前
10秒前
11秒前
橙熟发布了新的文献求助30
12秒前
YaoHui发布了新的文献求助10
12秒前
慕青应助八九采纳,获得10
13秒前
14秒前
14秒前
ding应助anny2022采纳,获得10
15秒前
花开富贵完成签到,获得积分10
15秒前
16秒前
16秒前
hae完成签到,获得积分20
16秒前
17秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342027
求助须知:如何正确求助?哪些是违规求助? 4478011
关于积分的说明 13937752
捐赠科研通 4374391
什么是DOI,文献DOI怎么找? 2403437
邀请新用户注册赠送积分活动 1396200
关于科研通互助平台的介绍 1368215