亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the Reliability of Molecular String Representations for Generative Chemistry

弦(物理) 生成语法 可靠性(半导体) 计算机科学 化学 计算化学 计算生物学 人工智能 物理 理论物理学 生物 热力学 功率(物理)
作者
Etienne Reboul,Zoe Wefers,Harish Prabakaran,Jérôme Waldispühl,Antoine Taly
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02261
摘要

Generative modeling for chemistry has advanced rapidly in recent years, but this surge in popularity raises a foundational question: which molecular representation is best suited for modern machine learning models? Despite not being designed for generative tasks, SMILES remains the most commonly used string-based representation. However, while SMILES follows strict syntactic rules, grammatically correct SMILES strings do not always correspond to valid molecules. SELFIES, an alternative grammar, addresses this limitation by ensuring that every string of SELFIES tokens represents a valid molecule. In this study, we comprehensively evaluate the limitations of both SMILES and SELFIES as representations for generative models. We analyze two key criteria for robust molecular generation: viability, which means that generated strings represent novel, unique molecules with correct valence, and fidelity, where the distribution of physicochemical properties from sampled molecules resembles that of the training data. We find that approximately one-fifth of the molecules generated using RDKit default canonical SMILES are invalid, failing the viability criterion. In contrast, all SELFIES-generated molecules are viable, but they deviate significantly from the training distribution, indicating low fidelity. To address these limitations, we develop data augmentation procedures for both representations. While simplifying the SELFIES grammar yields only modest gains in fidelity, our stochastic augmentation method for SMILES, ClearSMILES, significantly improves both viability and fidelity. ClearSMILES simplifies syntax by reducing the vocabulary size and explicitly encoding aromaticity via Kekule SMILES, making the string representations easier for models to process. Using ClearSMILES, the rate of invalid samples decreases by an order of magnitude, from 20 to 2.2%, and fidelity to the training distribution is also moderately improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽化成仙完成签到 ,获得积分10
2秒前
23秒前
39秒前
Adhklu发布了新的文献求助10
44秒前
49秒前
大个应助Adhklu采纳,获得10
55秒前
af发布了新的文献求助30
1分钟前
1分钟前
ZhaoW发布了新的文献求助10
1分钟前
Huzhu发布了新的文献求助20
2分钟前
2分钟前
小雨完成签到,获得积分10
2分钟前
bkagyin应助小雨采纳,获得10
2分钟前
af完成签到,获得积分10
2分钟前
李爱国应助ZhaoW采纳,获得10
2分钟前
2分钟前
生物云完成签到,获得积分10
3分钟前
Neuronicus完成签到,获得积分10
3分钟前
3分钟前
袁青寒完成签到,获得积分10
3分钟前
crazy完成签到,获得积分10
4分钟前
4分钟前
小雨发布了新的文献求助10
4分钟前
从来都不会放弃zr完成签到,获得积分10
5分钟前
蓝晴天发布了新的文献求助10
5分钟前
XYF完成签到,获得积分10
5分钟前
XYF发布了新的文献求助10
5分钟前
6分钟前
6分钟前
月落山海发布了新的文献求助10
6分钟前
6分钟前
欣喜秋天发布了新的文献求助10
6分钟前
hanawang发布了新的文献求助200
6分钟前
CRUSADER完成签到,获得积分10
6分钟前
欣喜秋天完成签到,获得积分20
6分钟前
7分钟前
8分钟前
ZhaoW发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
李爱国应助肖小小采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476451
求助须知:如何正确求助?哪些是违规求助? 4578102
关于积分的说明 14363447
捐赠科研通 4506022
什么是DOI,文献DOI怎么找? 2469091
邀请新用户注册赠送积分活动 1456539
关于科研通互助平台的介绍 1430317