Self-Attention Transformer-Based Architecture for Remaining Useful Life Estimation of Complex Machines

计算机科学 涡扇发动机 深度学习 变压器 编码器 人工智能 实时计算 数据挖掘 机器学习 电压 量子力学 操作系统 物理 工程类 汽车工程
作者
Abdul Wahid,Muhammad Yahya,John G. Breslin,Muhammad Intizar Ali
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:217: 456-464 被引量:22
标识
DOI:10.1016/j.procs.2022.12.241
摘要

Meaningful feature extraction from multivariate time-series data is still challenging since it takes into account the correlation between pairs of sensors as well as the temporal information of each time-series. Meanwhile, the huge industrial system has evolved into a data-rich environment, resulting in the rapid development and deployment of deep learning for machine RUL prediction. RUL (Remaining Useful Life) examines a system's behavior over the course of its lifetime, that is, from the last inspection to when the system's performance deteriorates beyond a certain point. RUL has been addressed using Long-Short-Term Memory (LSTM) and Convolution Neural Network (CNN), particularly in complex tasks involving high-dimensional nonlinear data. The main focus, however, has been on degradation data. In 2021, a new realistic run-to-failure turbofan engine degradation dataset was released, which differs significantly from the simulation dataset. The key difference is that each cycle's flight duration varies, so the existing deep technique will be ineffective at predicting the RUL for real-world degradation data. We present a Self-Attention Transformer-Based Encoder model to address this problem. The encoder with the time-stamp encoder layer works in parallel to extract features from various sensors at various time stamps. Self-attention enables efficient processing of extended sequences and focuses on key elements of the input time series. Self-attention is used in the proposed Transformer model to access global characteristics from diverse time-series representations. Under real-world flight conditions, we conduct tests on turbofan engine degradation data using variable-length input. The proposed approach for estimating RUL of turbofan engines appears to be efficient based on empirical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开富贵发布了新的文献求助10
刚刚
1秒前
向前完成签到,获得积分10
1秒前
微笑谷菱发布了新的文献求助10
2秒前
3秒前
幸运星发布了新的文献求助20
3秒前
3秒前
乐乐应助niko采纳,获得10
3秒前
3秒前
桐桐应助dddd采纳,获得10
4秒前
yao完成签到,获得积分10
4秒前
arcgen发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
听风随影发布了新的文献求助10
5秒前
LYL完成签到,获得积分10
5秒前
6秒前
xxfsx应助正直的西牛采纳,获得10
6秒前
默默冬瓜应助Dr_guo采纳,获得10
6秒前
hahaha发布了新的文献求助10
7秒前
littlexuan发布了新的文献求助10
8秒前
Miaochen发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
花开富贵完成签到,获得积分10
11秒前
浮游应助高大的羽毛采纳,获得10
11秒前
聆听完成签到,获得积分10
11秒前
wang5945发布了新的文献求助10
11秒前
12秒前
hhh完成签到,获得积分10
12秒前
Akim应助勤劳白昼采纳,获得10
13秒前
13秒前
13秒前
梦漓完成签到 ,获得积分10
14秒前
苏一完成签到,获得积分10
14秒前
14秒前
15秒前
英吉利25发布了新的文献求助10
17秒前
诗歌节公社完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513420
求助须知:如何正确求助?哪些是违规求助? 4607670
关于积分的说明 14506268
捐赠科研通 4543232
什么是DOI,文献DOI怎么找? 2489441
邀请新用户注册赠送积分活动 1471376
关于科研通互助平台的介绍 1443441