Development and evaluation of machine learning models and nomogram for the prediction of severe acute pancreatitis

列线图 医学 急性胰腺炎 接收机工作特性 队列 曲线下面积 回顾性队列研究 胰腺炎 曲线下面积 试验预测值 机器学习 内科学 人工智能 计算机科学 药代动力学
作者
Zhu Luo,Jialin Shi,Yangyang Fang,Shunjie Pei,Yutian Lu,Ru‐Xia Zhang,Xin Ye,Wenxing Wang,Mengtian Li,Xiangjun Li,Mengyue Zhang,Guangxin Xiang,Zhifang Pan,Xiaoqun Zheng
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:38 (3): 468-475 被引量:7
标识
DOI:10.1111/jgh.16125
摘要

Severe acute pancreatitis (SAP) in patients progresses rapidly and can cause multiple organ failures associated with high mortality. We aimed to train a machine learning (ML) model and establish a nomogram that could identify SAP, early in the course of acute pancreatitis (AP).In this retrospective study, 631 patients with AP were enrolled in the training cohort. For predicting SAP early, five supervised ML models were employed, such as random forest (RF), K-nearest neighbors (KNN), and naive Bayes (NB), which were evaluated by accuracy (ACC) and the areas under the receiver operating characteristic curve (AUC). The nomogram was established, and the predictive ability was assessed by the calibration curve and AUC. They were externally validated by an independent cohort of 109 patients with AP.In the training cohort, the AUC of RF, KNN, and NB models were 0.969, 0.954, and 0.951, respectively, while the AUC of the Bedside Index for Severity in Acute Pancreatitis (BISAP), Ranson and Glasgow scores were only 0.796, 0.847, and 0.837, respectively. In the validation cohort, the RF model also showed the highest AUC, which was 0.961. The AUC for the nomogram was 0.888 and 0.955 in the training and validation cohort, respectively.Our findings suggested that the RF model exhibited the best predictive performance, and the nomogram provided a visual scoring model for clinical practice. Our models may serve as practical tools for facilitating personalized treatment options and improving clinical outcomes through pre-treatment stratification of patients with AP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助随风采纳,获得10
刚刚
lijian完成签到,获得积分10
1秒前
火星上曼卉完成签到,获得积分10
1秒前
1秒前
bkagyin应助wodetaiyangLLL采纳,获得10
2秒前
mito完成签到,获得积分10
3秒前
4秒前
FOX发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
8秒前
8秒前
jisoo发布了新的文献求助10
11秒前
丁一完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
jiuyuan135发布了新的文献求助10
14秒前
隐形曼青应助林深时见鹿采纳,获得10
15秒前
所所应助火星上惜蕊采纳,获得10
16秒前
16秒前
Eunhyo发布了新的文献求助10
17秒前
17秒前
ly关注了科研通微信公众号
17秒前
19秒前
Foch发布了新的文献求助10
19秒前
天天快乐应助缓慢洋葱采纳,获得10
19秒前
汉堡包应助一一采纳,获得10
20秒前
20秒前
小王发布了新的文献求助10
20秒前
路寻完成签到,获得积分10
20秒前
YFQ发布了新的文献求助10
20秒前
20秒前
21秒前
科研通AI2S应助Dravia采纳,获得10
21秒前
22秒前
22秒前
打打应助chen采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933777
求助须知:如何正确求助?哪些是违规求助? 3478912
关于积分的说明 11003326
捐赠科研通 3208821
什么是DOI,文献DOI怎么找? 1773378
邀请新用户注册赠送积分活动 860354
科研通“疑难数据库(出版商)”最低求助积分说明 797626