Predicting liquid chromatography−electrospray ionization/mass spectrometry signal from the structure of model compounds and experimental factors; case study of aripiprazole and its impurities

化学 分析物 电喷雾电离 质谱法 数量结构-活动关系 分子描述符 色谱法 生物系统 立体化学 生物
作者
Jovana Krmar,Ljiljana Tolić Stojadinović,Tatjana Đurkić,Ana Protić,Biljana Otašević
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:233: 115422-115422 被引量:1
标识
DOI:10.1016/j.jpba.2023.115422
摘要

A priori estimation of analyte response is crucial for the efficient development of liquid chromatography–electrospray ionization/mass spectrometry (LC–ESI/MS) methods, but remains a demanding task given the lack of knowledge about the factors affecting the experimental outcome. In this research, we address the challenge of discovering the interactive relationship between signal response and structural properties, method parameters and solvent-related descriptors throughout an approach featuring quantitative structure–property relationship (QSPR) and design of experiments (DoE). To systematically investigate the experimental domain within which QSPR prediction should be undertaken, we varied LC and instrumental factors according to the Box-Behnken DoE scheme. Seven compounds, including aripiprazole and its impurities, were subjected to 57 different experimental conditions, resulting in 399 LC–ESI/MS data endpoints. To obtain a more standard distribution of the measured response, the peak areas were log-transformed before modeling. QSPR predictions were made using features selected by Genetic Algorithm (GA) and providing Gradient Boosted Trees (GBT) with training data. Proposed model showed satisfactory performance on test data with a RMSEP of 1.57 % and a of 96.48 %. This is the first QSPR study in LC–ESI/MS that provided a holistic overview of the analyte’s response behavior across the experimental and chemical space. Since intramolecular electronic effects and molecular size were given great importance, the GA–GBT model improved the understanding of signal response generation of model compounds. It also highlighted the need to fine-tune the parameters affecting desolvation and droplet charging efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztl17523完成签到,获得积分10
1秒前
顾闭月完成签到,获得积分10
1秒前
cc完成签到,获得积分10
2秒前
2秒前
按时毕业的小林完成签到,获得积分20
3秒前
竹音完成签到,获得积分10
3秒前
ED应助落后妙梦采纳,获得10
4秒前
积极一德完成签到 ,获得积分10
5秒前
风为裳完成签到,获得积分10
5秒前
心心完成签到,获得积分10
6秒前
欣喜南莲完成签到,获得积分20
7秒前
7秒前
xrkxrk完成签到 ,获得积分0
8秒前
灵美完成签到,获得积分10
9秒前
9秒前
神秘面筋男完成签到,获得积分10
9秒前
Akim应助按时毕业的小林采纳,获得30
10秒前
FIN应助玩是罪恶的采纳,获得10
10秒前
小虫虫完成签到,获得积分10
11秒前
Justtry发布了新的文献求助10
12秒前
KJ完成签到,获得积分10
12秒前
RichieXU完成签到,获得积分10
12秒前
makenemore完成签到,获得积分10
12秒前
雨点完成签到,获得积分10
13秒前
liu完成签到 ,获得积分10
13秒前
kangkang完成签到 ,获得积分10
14秒前
TRY完成签到,获得积分10
14秒前
towanda完成签到,获得积分10
14秒前
欣喜南莲发布了新的文献求助10
14秒前
15秒前
欣慰外套完成签到 ,获得积分10
16秒前
Vesper完成签到 ,获得积分10
16秒前
17秒前
孙梁子完成签到,获得积分10
17秒前
思源应助一直向前采纳,获得10
17秒前
俏皮的采波完成签到,获得积分10
17秒前
青青完成签到 ,获得积分10
18秒前
18秒前
陈文娟完成签到,获得积分10
18秒前
深情安青应助ntxlks采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259