Application of Convolutional Neural Networks for Classifying Penetration Conditions in GMAW Processes Using STFT of Welding Data

气体保护金属极电弧焊 卷积神经网络 人工智能 焊接 计算机科学 短时傅里叶变换 模式识别(心理学) 材料科学 傅里叶变换 数学 冶金 热影响区 数学分析 傅里叶分析
作者
Dong-Yoon Kim,Hyung Won Lee,Jiyoung Yu,Jong-Kyu Park
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (11): 4883-4883 被引量:8
标识
DOI:10.3390/app14114883
摘要

For manufacturing components with thick plates, such as in the heavy equipment and shipbuilding industries, the gas metal arc welding (GMAW) process is applied. Among the components that apply the thick plate GMAW process, there are groove butt joints, which are fabricated through multi-pass welding. Various welding qualities are managed in multi-pass welding, and the root-pass weld is controlled to ensure complete joint penetration (CJP). Currently, the state of complete joint penetration during root-pass welding is managed visually, making it difficult to confirm the penetration condition in real time. Therefore, there is a need to predict the penetration condition in real time. In this study, we propose a convolutional neural network (CNN)-based prediction model that can classify penetration conditions using welding current and voltage data from the root pass of V-groove butt joints. The root gap of the joints was varied between 1.0 and 2.0 mm, and the wire feed rate was adjusted. During welding, the current and voltage were measured. The welding current and voltage are transformed into a short-time Fourier transform (STFT) representation depicting the arc and wire extension lengths. The transformed dynamic resistance STFT information serves as the input variable for the CNN model. Preprocessing steps, including thresholding, are applied to optimize the input variables. The CNN architecture comprises three convolutional layers and two pooling layers. The model classifies penetration conditions as partial joint penetration (PJP), CJP, and burn-through, achieving a high accuracy of 97.8%. The proposed method facilitates the non-destructive evaluation of the root-pass welding quality without expensive monitoring equipment, such as vision cameras. It is expected to be immediately applied to the thick plate welding process using readily available welding data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
九城发布了新的文献求助10
1秒前
1秒前
2秒前
乐乐应助YangYue采纳,获得10
2秒前
学习使勇哥进步完成签到,获得积分10
3秒前
李爱国应助爱笑如冰采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
青椒肉丝发布了新的文献求助10
5秒前
viclcn完成签到,获得积分10
5秒前
6秒前
科研通AI6应助1816013153采纳,获得30
7秒前
7秒前
顾矜应助洞两采纳,获得10
8秒前
洋了个洋完成签到,获得积分10
9秒前
10秒前
轻松乐巧完成签到 ,获得积分10
12秒前
丘比特应助疯狂的石头采纳,获得10
12秒前
YangYue完成签到,获得积分10
12秒前
13秒前
小太阳完成签到,获得积分10
13秒前
青椒肉丝完成签到,获得积分20
13秒前
菜菜发布了新的文献求助10
13秒前
勤恳雅莉应助科研通管家采纳,获得10
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
spc68应助乐观的幼珊采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得30
13秒前
CipherSage应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
光而不耀发布了新的文献求助10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
勤恳雅莉应助科研通管家采纳,获得10
14秒前
14秒前
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583134
求助须知:如何正确求助?哪些是违规求助? 4667079
关于积分的说明 14765156
捐赠科研通 4609214
什么是DOI,文献DOI怎么找? 2529043
邀请新用户注册赠送积分活动 1498340
关于科研通互助平台的介绍 1466975