Data-driven message optimization in dynamic sports media: an artificial intelligence approach to predict consumer response

计算机科学 大数据 预测分析 机器学习 人工智能 数据科学 预测建模 分析 生物识别 消费者行为 营销 数据挖掘 业务
作者
Elisa Herold,Aaditya Singh,Boris Feodoroff,Christoph Breuer
出处
期刊:Sport Management Review [Taylor & Francis]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/14413523.2024.2372122
摘要

Artificial intelligence (AI) and big data have the potential to promote advancement across various industries. Sport management and marketing have also significantly transformed due to rapid technological advances such as those in AI and big data analytics. Especially sports companies, however, are still underutilizing the potential of AI. At the same time, considering the existing sport marketing research, the effectiveness and optimization of dynamic marketing stimuli in dynamic sport media settings remains unclear. This study aims to assess the differences between two AI models' predictive capabilities with and without access to consumers' biometric data when forecasting the influence of game features on consumers' responses. Academic theoretical models indicate that individual biometric features have a considerable influence on consumers' responses; nevertheless, it remains impractical for companies to access these data concerning message effectiveness and ROI evaluation. Therefore, the study attempts to enhance the feasibility of message optimization for companies by trialing a real-time prediction derived from game features alone, exemplifying how much predictive capability is lost by non-available consumer data. Two supervised machine learning models (one initial, primarily theoretical based model; one adapted model due to available data) were trained to reanalyze large-scale eye tracking and game-related data, resulting in high predictive accuracy and appropriate applicability of the models. Both models were able to predict consumers' responses with over 90% accuracy (initial model: 96%; adapted model: 94%). This study exemplifies AI usage in sport marketing and management, enabling companies to implement more effective marketing messages and strategies for their sponsorship based on real-time evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助317采纳,获得10
刚刚
怕孤单的思雁完成签到,获得积分10
1秒前
1秒前
bc应助666采纳,获得50
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
不倦应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
不倦应助科研通管家采纳,获得10
2秒前
可爱大地发布了新的文献求助10
2秒前
2秒前
大气亦巧完成签到,获得积分10
5秒前
落后书竹发布了新的文献求助10
6秒前
复杂念梦发布了新的文献求助10
8秒前
12秒前
第9527号文明完成签到,获得积分10
12秒前
CZF完成签到 ,获得积分10
13秒前
14秒前
15秒前
天天快乐应助科研小白采纳,获得10
16秒前
Whassupww完成签到,获得积分10
17秒前
19秒前
李德胜完成签到,获得积分10
19秒前
ziliz发布了新的文献求助10
20秒前
领导范儿应助大气问枫采纳,获得10
22秒前
blacksmith0发布了新的文献求助10
22秒前
25秒前
25秒前
wanci应助吴1采纳,获得10
26秒前
复杂念梦发布了新的文献求助10
26秒前
orixero应助追寻紫安采纳,获得10
27秒前
marco完成签到,获得积分10
28秒前
乐乐应助AlexLee采纳,获得10
28秒前
科研通AI5应助ziliz采纳,获得10
29秒前
XIA完成签到 ,获得积分10
30秒前
cici完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522