Learning to Discover Knowledge: A Weakly-Supervised Partial Domain Adaptation Approach

计算机科学 域适应 人工智能 领域知识 领域(数学分析) 机器学习 数学 分类器(UML) 数学分析
作者
Mengcheng Lan,Min Meng,Jun Yu,Jigang Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4090-4103 被引量:3
标识
DOI:10.1109/tip.2024.3418581
摘要

Domain adaptation has shown appealing performance by leveraging knowledge from a source domain with rich annotations. However, for a specific target task, it is cumbersome to collect related and high-quality source domains. In real-world scenarios, large-scale datasets corrupted with noisy labels are easy to collect, stimulating a great demand for automatic recognition in a generalized setting, i.e., weakly-supervised partial domain adaptation (WS-PDA), which transfers a classifier from a large source domain with noises in labels to a small unlabeled target domain. As such, the key issues of WS-PDA are: 1) how to sufficiently discover the knowledge from the noisy labeled source domain and the unlabeled target domain, and 2) how to successfully adapt the knowledge across domains. In this paper, we propose a simple yet effective domain adaptation approach, termed as self-paced transfer classifier learning (SP-TCL), to address the above issues, which could be regarded as a well-performing baseline for several generalized domain adaptation tasks. The proposed model is established upon the self-paced learning scheme, seeking a preferable classifier for the target domain. Specifically, SP-TCL learns to discover faithful knowledge via a carefully designed prudent loss function and simultaneously adapts the learned knowledge to the target domain by iteratively excluding source examples from training under the self-paced fashion. Extensive evaluations on several benchmark datasets demonstrate that SP-TCL significantly outperforms state-of-the-art approaches on several generalized domain adaptation tasks. Code is available at https://github.com/mc-lan/SP-TCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
somous完成签到,获得积分10
刚刚
南巷完成签到,获得积分10
1秒前
郭素玲发布了新的文献求助10
1秒前
1秒前
1秒前
左边向北发布了新的文献求助10
2秒前
Apricity发布了新的文献求助10
2秒前
2秒前
huihuiwang完成签到,获得积分10
2秒前
2秒前
Akim应助科研通管家采纳,获得10
3秒前
Questa_Qin完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
杨欣悦发布了新的文献求助10
3秒前
无无完成签到,获得积分10
3秒前
李健应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
孙豪泽发布了新的文献求助10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
赘婿应助小糊涂仙儿采纳,获得10
4秒前
猫丞发布了新的文献求助10
4秒前
李健应助科研通管家采纳,获得30
4秒前
thomas完成签到,获得积分20
5秒前
大模型应助科研通管家采纳,获得10
5秒前
乔治发布了新的文献求助30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
Gavin完成签到,获得积分10
5秒前
Alice应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066