已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke

过度拟合 计算机科学 人工智能 分割 溶栓 模式识别(心理学) 特征学习 任务(项目管理) 特征(语言学) 机器学习 人工神经网络 医学 哲学 精神科 经济 管理 心肌梗塞 语言学
作者
Jiarui Sun,Yuhao Liu,Yan Xi,Gouenou Coatrieux,Jean-Louis Coatrieux,Xu Ji,Liang Jiang,Yang Chen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103250-103250 被引量:3
标识
DOI:10.1016/j.media.2024.103250
摘要

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyse the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰完成签到,获得积分0
刚刚
田幻雪发布了新的文献求助10
1秒前
5秒前
邓邓发布了新的文献求助20
6秒前
南科易梦应助田幻雪采纳,获得10
9秒前
归海浩阑完成签到,获得积分10
10秒前
彭于晏应助Ni采纳,获得10
11秒前
苏绿秋完成签到,获得积分10
12秒前
13秒前
17秒前
二个虎牙发布了新的文献求助30
19秒前
mm完成签到 ,获得积分10
20秒前
充电宝应助XJH采纳,获得10
22秒前
xavier完成签到 ,获得积分10
22秒前
Ni发布了新的文献求助10
24秒前
27秒前
29秒前
30秒前
YXY发布了新的文献求助10
31秒前
32秒前
俭朴的元绿完成签到 ,获得积分10
32秒前
fanssw完成签到 ,获得积分10
33秒前
37秒前
Lucky完成签到,获得积分20
37秒前
37秒前
邓邓完成签到,获得积分10
38秒前
彩色寒凡发布了新的文献求助10
40秒前
Lucky发布了新的文献求助30
41秒前
小丛完成签到 ,获得积分10
43秒前
冷静新烟发布了新的文献求助10
44秒前
研友_VZG7GZ应助彩色寒凡采纳,获得10
46秒前
邹醉蓝完成签到,获得积分10
46秒前
落寞臻完成签到,获得积分10
49秒前
Lyl完成签到 ,获得积分10
53秒前
kittency完成签到 ,获得积分10
53秒前
虚幻元风完成签到 ,获得积分10
55秒前
wbs13521完成签到,获得积分10
57秒前
沙脑完成签到 ,获得积分10
1分钟前
1分钟前
只如初完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919831
求助须知:如何正确求助?哪些是违规求助? 3464734
关于积分的说明 10935083
捐赠科研通 3193134
什么是DOI,文献DOI怎么找? 1764470
邀请新用户注册赠送积分活动 854921
科研通“疑难数据库(出版商)”最低求助积分说明 794522