Regression-Guided Refocusing Learning with Feature Alignment for Remote Sensing Tiny Object Detection

计算机科学 目标检测 人工智能 特征(语言学) 遥感 特征提取 计算机视觉 模式识别(心理学) 对象(语法) 地质学 语言学 哲学
作者
Lihui Ge,Guanqun Wang,Tong Zhang,Yin Zhuang,He Chen,Hao Dong,Liang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:2
标识
DOI:10.1109/tgrs.2024.3407122
摘要

Tiny object detection is a formidable challenge in remote sensing intelligent interpretation. Tiny objects are usually fuzzy, densely distributed and highly sensitive to positioning errors, which leads to the mainstream detector usually achieving suboptimal detection performance when facing tiny objects. To address the mismatch of mainstream detector architectures and model optimization strategies in the context of tiny object detection, this paper presents an efficient and interpretable algorithm for tiny object detection, termed the Cross-Attention based Feature Fusion Enhanced tiny object detection Network (CAF 2 ENet). First, the cross-attention mechanism is introduced to refine the upsampling results of deep features. This refinement improves the precision of multi-scale feature fusion. Second, a training strategy named regression-based refocusing learning is introduced. Deviating from the conventional optimization strategy, our method guides the optimizer to prioritize higher-quality detection boxes by adjusting sample weights. This adjustment significantly amplifies the detector's potential to achieve superior detection results. Finally, the object composite confidence score is employed for the interpretable filtering of detection boxes. Extensive experiments on Tiny Object Detection in Aerial Images (AI-TOD) and object Detection in Optical Remote sensing images (DIOR) datasets are carried out, and comparison indicate that the proposed CAF 2 ENet can perform the remarkable performance compared to other state-of-the-art (SOTA) tiny object detection detectors, as it can reach 63.7% Average Precision ( AP 50 ) on AI-TOD and 75.4% AP 50 on DIOR, achieve SOTA performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GQ发布了新的文献求助10
2秒前
郑方形发布了新的文献求助10
2秒前
核桃发布了新的文献求助10
2秒前
3秒前
魔王小豆包完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
lucy发布了新的文献求助10
5秒前
善学以致用应助小遇采纳,获得10
5秒前
zhangzhang完成签到,获得积分10
5秒前
好运好运好运完成签到,获得积分10
5秒前
wdlc完成签到,获得积分10
6秒前
Eating关注了科研通微信公众号
7秒前
杰jie发布了新的文献求助10
7秒前
7秒前
李爱国应助二三三采纳,获得10
8秒前
帅冰冰冰完成签到,获得积分10
8秒前
btyjs发布了新的文献求助10
9秒前
cxz发布了新的文献求助10
9秒前
科研通AI6应助还行采纳,获得10
9秒前
科研通AI5应助buno采纳,获得10
9秒前
9秒前
今后应助Zhaoyt采纳,获得20
9秒前
沛山应助sususu采纳,获得10
10秒前
Ran完成签到 ,获得积分10
11秒前
11秒前
11秒前
冰锋三千应助儒雅的冷松采纳,获得10
12秒前
weber发布了新的文献求助10
13秒前
芝士大王发布了新的文献求助10
14秒前
z945完成签到,获得积分10
15秒前
打打应助11112321321采纳,获得10
16秒前
好好学习发10分完成签到 ,获得积分10
16秒前
清晨牛发布了新的文献求助10
17秒前
小湛湛完成签到 ,获得积分20
17秒前
脑洞疼应助雪山采纳,获得10
17秒前
18秒前
友好皮皮虾完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4373077
求助须知:如何正确求助?哪些是违规求助? 3870155
关于积分的说明 12064152
捐赠科研通 3512832
什么是DOI,文献DOI怎么找? 1927722
邀请新用户注册赠送积分活动 969589
科研通“疑难数据库(出版商)”最低求助积分说明 868419