JutePest-YOLO: A Deep Learning Network for Jute Pest Identification and Detection

计算机科学 有害生物分析 人工智能 卷积神经网络 鉴定(生物学) 深度学习 机器学习 模式识别(心理学) 农业工程 生态学 生物 植物 工程类
作者
Shuai Zhang,Heng Wang,Cong Zhang,Zheng Liu,Yiming Jiang,Lei Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 72938-72956 被引量:10
标识
DOI:10.1109/access.2024.3403491
摘要

In recent years, jute, as an important natural fiber crop, has become more and more significant in the production process of insect pests, causing serious harm to agricultural production. Especially in the field of crop pest identification with complex backgrounds, fuzzy features, and multiple small targets, the lack of datasets specifically for jute pests has led to the large limitations of traditional pest identification models in terms of generalization. At the same time, the research on models specifically for jute pest detection is still in its infancy. To solve this problem, we constructed a large-scale image dataset containing nine types of jute pests, which was highly targeted and could effectively support model training and evaluation. In this study, we developed a deep convolutional neural network model based on YOLOv7, namely JutePest-YOLO. The model has optimized the Backbone, Head, and loss functions of the baseline model, and introduced the new ELAN-P module and P6 detection layer, which effectively improved the model's ability to identify jute pests in complex backgrounds. The experimental results showed that compared with the baseline model, the Precision, Recall, and F1 scores of the JutePest-YOLO model were improved by 3.45%, 1.76%, and 2.58%, respectively; the mAP@0.5 and mAP@0.5:0.95 was improved by 2.24% and 3.25%, and the overall model's computation (GFLOPS) was reduced by 16.05%. Compared to other advanced methods such as YOLOv8s, JutePest-YOLO has achieved superior performance in terms of detection accuracy, with a precision of 98.7% and mAP@0.5 reaching 95.68%. As a result, JutePest-YOLO not only achieved significant improvement in recognition accuracy but also optimized computational efficiency. It's a high-performance, lightweight solution for jute pest detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bolysu发布了新的文献求助10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Profeto应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
张思齐发布了新的文献求助10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
赫若魔应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
傲娇石头应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
ephore应助科研通管家采纳,获得50
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得50
2秒前
科研通AI2S应助欧西采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Nicole发布了新的文献求助10
3秒前
小杭76应助科研通管家采纳,获得10
4秒前
青柚子应助科研通管家采纳,获得10
4秒前
木头马尾应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969538
求助须知:如何正确求助?哪些是违规求助? 4226537
关于积分的说明 13163278
捐赠科研通 4014165
什么是DOI,文献DOI怎么找? 2196416
邀请新用户注册赠送积分活动 1209656
关于科研通互助平台的介绍 1123780