已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A 3D framework for segmentation of carotid artery vessel wall and identification of plaque compositions in multi-sequence MR images

颈动脉 分割 子网 鉴定(生物学) 人工智能 颈总动脉 图像分割 医学 易损斑块 计算机科学 模式识别(心理学) 计算机视觉 心脏病学 生物 计算机安全 植物
作者
Jian Wang,Fan Yu,Mengze Zhang,Jie Lu,Zhen Qian
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:116: 102402-102402 被引量:3
标识
DOI:10.1016/j.compmedimag.2024.102402
摘要

Accurately assessing carotid artery wall thickening and identifying risky plaque components are critical for early diagnosis and risk management of carotid atherosclerosis. In this paper, we present a 3D framework for automated segmentation of the carotid artery vessel wall and identification of the compositions of carotid plaque in multi-sequence magnetic resonance (MR) images under the challenge of imperfect manual labeling. Manual labeling is commonly done in 2D slices of these multi-sequence MR images and often lacks perfect alignment across 2D slices and the multiple MR sequences, leading to labeling inaccuracies. To address such challenges, our framework is split into two parts: a segmentation subnetwork and a plaque component identification subnetwork. Initially, a 2D localization network pinpoints the carotid artery's position, extracting the region of interest (ROI) from the input images. Following that, a signed-distance-map-enabled 3D U-net (Çiçek etal, 2016)an adaptation of the nnU-net (Ronneberger and Fischer, 2015) segments the carotid artery vessel wall. This method allows for the concurrent segmentation of the vessel wall area using the signed distance map (SDM) loss (Xue et al., 2020) which regularizes the segmentation surfaces in 3D and reduces erroneous segmentation caused by imperfect manual labels. Subsequently, the ROI of the input images and the obtained vessel wall masks are extracted and combined to obtain the identification results of plaque components in the identification subnetwork. Tailored data augmentation operations are introduced into the framework to reduce the false positive rate of calcification and hemorrhage identification. We trained and tested our proposed method on a dataset consisting of 115 patients, and it achieves an accurate segmentation result of carotid artery wall (0.8459 Dice), which is superior to the best result in published studies (0.7885 Dice). Our approach yielded accuracies of 0.82, 0.73 and 0.88 for the identification of calcification, lipid-rich core and hemorrhage components. Our proposed framework can be potentially used in clinical and research settings to help radiologists perform cumbersome reading tasks and evaluate the risk of carotid plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mr.H完成签到 ,获得积分10
刚刚
大大的寄吧完成签到,获得积分10
1秒前
1秒前
火星完成签到 ,获得积分10
2秒前
2秒前
奋斗的小笼包完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
语行完成签到 ,获得积分10
6秒前
云霞完成签到 ,获得积分10
6秒前
QDWang发布了新的文献求助10
6秒前
RonSmith完成签到,获得积分10
6秒前
顾良完成签到 ,获得积分10
7秒前
7秒前
爆米花应助耳东陈采纳,获得10
8秒前
Mottri完成签到 ,获得积分10
8秒前
李振博发布了新的文献求助10
8秒前
Tsin778完成签到 ,获得积分10
11秒前
易小杨发布了新的文献求助10
11秒前
温暖jiammm完成签到 ,获得积分10
12秒前
13秒前
swslgd完成签到 ,获得积分10
15秒前
LYY发布了新的文献求助10
15秒前
16秒前
冷酷飞飞完成签到 ,获得积分10
16秒前
Q同学完成签到 ,获得积分10
17秒前
17秒前
汉堡完成签到 ,获得积分10
18秒前
beetes完成签到,获得积分10
19秒前
19秒前
木子完成签到 ,获得积分10
20秒前
XX0完成签到 ,获得积分10
20秒前
lance完成签到,获得积分10
20秒前
21秒前
陈槊诸完成签到 ,获得积分10
22秒前
淡然的行完成签到,获得积分10
23秒前
超级七七发布了新的文献求助10
24秒前
科研通AI6应助清爽的乐双采纳,获得10
24秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386