衰老
自噬
生物
细胞生物学
下调和上调
癌症研究
PI3K/AKT/mTOR通路
信号转导
生物化学
细胞凋亡
基因
作者
Shi-rui Bai,Qi Zhao,Huijie Jia,Fei He,Xiaobo Wang
标识
DOI:10.1139/cjpp-2023-0432
摘要
5-Fluorouracil (5-FU) is a first-line treatment for colorectal cancer, but side effects such as severe diarrhea are common in clinical use and have been linked to its induction of normal cell senescence. Chloramphenicol (CAP) is an antibiotic commonly used to treat typhoid or anaerobic infections, but its senescence-related aspects have not been thoroughly investigated. Here, we used 5-FU to induce senescence in human umbilical vein endothelial cells (HUVECs) and investigated the relationship between CAP and cellular senescence at the cellular level. In a model of cellular senescence induced by 5-FU treatment, we discovered that CAP treatment reversed the rise in the percentage of senescence-associated galactosidase (SA-β-gal)-positive cells and decreased the expression of senescence-associated proteins (p16), senescence-associated genes (p21), and senescence-associated secretory phenotypes (SASPs: IL-6, TNF-α). In addition, CAP subsequently restored the autophagic process inhibited by 5-FU and upregulated the levels of autophagy-related proteins. Mechanistically, we found that CAP restored autophagic flux by inhibiting the mTOR pathway, which in turn alleviated FU-induced cellular senescence. Our findings suggest that CAP may help prevent cellular senescence and restore autophagy, opening up new possibilities and approaches for the clinical management of colorectal cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI