Distilled Heterogeneous Feature Alignment Network for SAR Image Semantic Segmentation

计算机科学 合成孔径雷达 特征(语言学) 分割 人工智能 图像分割 模式识别(心理学) 计算机视觉 遥感 地质学 语言学 哲学
作者
Mengyu Gao,Jiping Xu,Jiabin Yu,Qiulei Dong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3293160
摘要

SAR (Synthetic Aperture Radar) image semantic segmentation has attracted increasing attention in the remote sensing community recently, due to SAR’s all-time and all-weather imaging capability. However, SAR images are generally more difficult to be segmented than their EO (Electro-Optical) counterparts, since speckle noises and layovers are inevitably involved in SAR images. On the other hand, EO images could only be obtained under cloud-free conditions, which limits their applications. To this end, this letter investigates how to introduce EO features to assist the training of a SAR-segmentation model so that the model could segment SAR images without their EO counterparts in application, and proposes a distilled heterogeneous feature alignment network (DHFA-Net), where a SAR-segmentation student model learns and aligns the features from a pre-trained EO-segmentation teacher model. In the proposed DHFA-Net, both the student and teacher models employ an identical architecture but different parameter configurations, and a heterogeneous feature distillation module is explored for transferring latent EO features from the teacher model to the student model through heterogeneous feature distillation and then supervising the training of the SAR-segmentation model. Moreover, a heterogeneous feature alignment module is designed to aggregate multi-scale features for segmentation by feature alignment approach in each of the student and teacher models. By enabling the multi-scale heterogeneous feature aggregation, the SAR segmentation performance could be boosted. Experimental results on two public datasets demonstrate the superiority of the proposed DHFA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学者完成签到,获得积分20
刚刚
情怀应助高高的魔镜采纳,获得10
1秒前
1秒前
ccc完成签到,获得积分10
2秒前
chen完成签到,获得积分10
3秒前
大羊发布了新的文献求助10
3秒前
4秒前
白单位完成签到,获得积分10
4秒前
5秒前
6秒前
YWY完成签到,获得积分10
6秒前
科研通AI6应助时笙采纳,获得10
7秒前
白单位发布了新的文献求助30
7秒前
言标发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
可爱的函函应助风趣易形采纳,获得10
10秒前
11秒前
11秒前
11秒前
老年学术废物完成签到 ,获得积分10
13秒前
朱银龙完成签到,获得积分10
14秒前
浣熊小呆发布了新的文献求助10
14秒前
共享精神应助夜星子采纳,获得10
15秒前
唐宋8大家发布了新的文献求助10
16秒前
小X发布了新的文献求助10
16秒前
呆呆发布了新的文献求助10
16秒前
灵巧大地完成签到,获得积分10
18秒前
可爱的函函应助Wangle采纳,获得30
18秒前
19秒前
waier发布了新的文献求助10
19秒前
Emily完成签到,获得积分10
20秒前
desperado完成签到,获得积分10
21秒前
21秒前
铭子完成签到 ,获得积分10
22秒前
小鸣完成签到 ,获得积分10
23秒前
Doc_Ocean完成签到,获得积分10
23秒前
Emily发布了新的文献求助30
23秒前
CipherSage应助朱银龙采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581574
关于积分的说明 14381235
捐赠科研通 4510152
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458083
关于科研通互助平台的介绍 1431812