Distilled Heterogeneous Feature Alignment Network for SAR Image Semantic Segmentation

计算机科学 合成孔径雷达 特征(语言学) 分割 人工智能 图像分割 模式识别(心理学) 计算机视觉 遥感 地质学 哲学 语言学
作者
Mengyu Gao,Jiping Xu,Jiabin Yu,Qiulei Dong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3293160
摘要

SAR (Synthetic Aperture Radar) image semantic segmentation has attracted increasing attention in the remote sensing community recently, due to SAR’s all-time and all-weather imaging capability. However, SAR images are generally more difficult to be segmented than their EO (Electro-Optical) counterparts, since speckle noises and layovers are inevitably involved in SAR images. On the other hand, EO images could only be obtained under cloud-free conditions, which limits their applications. To this end, this letter investigates how to introduce EO features to assist the training of a SAR-segmentation model so that the model could segment SAR images without their EO counterparts in application, and proposes a distilled heterogeneous feature alignment network (DHFA-Net), where a SAR-segmentation student model learns and aligns the features from a pre-trained EO-segmentation teacher model. In the proposed DHFA-Net, both the student and teacher models employ an identical architecture but different parameter configurations, and a heterogeneous feature distillation module is explored for transferring latent EO features from the teacher model to the student model through heterogeneous feature distillation and then supervising the training of the SAR-segmentation model. Moreover, a heterogeneous feature alignment module is designed to aggregate multi-scale features for segmentation by feature alignment approach in each of the student and teacher models. By enabling the multi-scale heterogeneous feature aggregation, the SAR segmentation performance could be boosted. Experimental results on two public datasets demonstrate the superiority of the proposed DHFA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助柒七采纳,获得10
刚刚
1秒前
顾矜应助xxxxx采纳,获得10
2秒前
xiamovivi完成签到,获得积分10
2秒前
大力的忆霜完成签到 ,获得积分20
2秒前
邬紫依发布了新的文献求助20
3秒前
Jasper应助千千采纳,获得10
4秒前
4秒前
4秒前
Eve丶Paopaoxuan应助liuchuck采纳,获得10
5秒前
5秒前
小星星发布了新的文献求助10
5秒前
喻箴完成签到,获得积分10
5秒前
6秒前
哭泣嵩发布了新的文献求助10
6秒前
7秒前
英俊的铭应助小牟同学采纳,获得10
7秒前
CC完成签到 ,获得积分10
7秒前
SciGPT应助runrun采纳,获得10
7秒前
科研啊科研完成签到,获得积分10
8秒前
8秒前
yizhouchang应助老Mark采纳,获得50
8秒前
罗鸯鸯发布了新的文献求助10
9秒前
9秒前
Orange应助innerpeace采纳,获得10
10秒前
行走的绅士完成签到,获得积分10
10秒前
10秒前
10秒前
Jianjiama完成签到,获得积分10
10秒前
11秒前
11秒前
等等发布了新的文献求助10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得20
12秒前
天涯是我发布了新的文献求助10
12秒前
东方三问应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796310
求助须知:如何正确求助?哪些是违规求助? 3341256
关于积分的说明 10305642
捐赠科研通 3057817
什么是DOI,文献DOI怎么找? 1677946
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762759