Survey on the research direction of EEG-based signal processing

计算机科学 人工智能 深度学习 预处理器 卷积神经网络 特征提取 模式识别(心理学) 特征选择 人工神经网络 数据预处理 脑电图 光学(聚焦) 机器学习 心理学 物理 精神科 光学
作者
Congzhong Sun,Chaozhou Mou
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:6
标识
DOI:10.3389/fnins.2023.1203059
摘要

Electroencephalography (EEG) is increasingly important in Brain-Computer Interface (BCI) systems due to its portability and simplicity. In this paper, we provide a comprehensive review of research on EEG signal processing techniques since 2021, with a focus on preprocessing, feature extraction, and classification methods. We analyzed 61 research articles retrieved from academic search engines, including CNKI, PubMed, Nature, IEEE Xplore, and Science Direct. For preprocessing, we focus on innovatively proposed preprocessing methods, channel selection, and data augmentation. Data augmentation is classified into conventional methods (sliding windows, segmentation and recombination, and noise injection) and deep learning methods [Generative Adversarial Networks (GAN) and Variation AutoEncoder (VAE)]. We also pay attention to the application of deep learning, and multi-method fusion approaches, including both conventional algorithm fusion and fusion between conventional algorithms and deep learning. Our analysis identifies 35 (57.4%), 18 (29.5%), and 37 (60.7%) studies in the directions of preprocessing, feature extraction, and classification, respectively. We find that preprocessing methods have become widely used in EEG classification (96.7% of reviewed papers) and comparative experiments have been conducted in some studies to validate preprocessing. We also discussed the adoption of channel selection and data augmentation and concluded several mentionable matters about data augmentation. Furthermore, deep learning methods have shown great promise in EEG classification, with Convolutional Neural Networks (CNNs) being the main structure of deep neural networks (92.3% of deep learning papers). We summarize and analyze several innovative neural networks, including CNNs and multi-structure fusion. However, we also identified several problems and limitations of current deep learning techniques in EEG classification, including inappropriate input, low cross-subject accuracy, unbalanced between parameters and time costs, and a lack of interpretability. Finally, we highlight the emerging trend of multi-method fusion approaches (49.2% of reviewed papers) and analyze the data and some examples. We also provide insights into some challenges of multi-method fusion. Our review lays a foundation for future studies to improve EEG classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎黎原上草完成签到,获得积分10
1秒前
1秒前
酷波er应助想美事采纳,获得10
2秒前
2秒前
好喜欢笔鱼完成签到,获得积分10
3秒前
WXX发布了新的文献求助10
4秒前
崔崔发布了新的文献求助10
5秒前
黄伟凯发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助lllllljmjmjm采纳,获得10
6秒前
8秒前
wenyliang完成签到,获得积分10
9秒前
chaos发布了新的文献求助20
10秒前
英俊的铭应助GRY采纳,获得10
11秒前
11秒前
12秒前
丰富的乌冬面应助wyw采纳,获得10
12秒前
李爱国应助大方的天问采纳,获得10
12秒前
刚子发布了新的文献求助10
13秒前
13秒前
我是老大应助冷傲曼冬采纳,获得10
13秒前
14秒前
今后应助崔崔采纳,获得10
15秒前
15秒前
16秒前
王计恩发布了新的文献求助10
16秒前
浮游应助浮浮世世采纳,获得10
16秒前
DrY发布了新的文献求助10
16秒前
丁丁发布了新的文献求助10
17秒前
17秒前
17秒前
raven发布了新的文献求助10
17秒前
fduqyy发布了新的文献求助10
17秒前
18秒前
18秒前
打打应助kuzzi采纳,获得10
19秒前
科研通AI6应助WJ采纳,获得10
20秒前
20秒前
想美事发布了新的文献求助10
20秒前
冷静的奇迹完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486300
求助须知:如何正确求助?哪些是违规求助? 4585898
关于积分的说明 14407091
捐赠科研通 4516365
什么是DOI,文献DOI怎么找? 2474768
邀请新用户注册赠送积分活动 1460688
关于科研通互助平台的介绍 1433773